論文の概要: Robust deep learning from weakly dependent data
- arxiv url: http://arxiv.org/abs/2405.05081v1
- Date: Wed, 8 May 2024 14:25:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 14:14:56.355292
- Title: Robust deep learning from weakly dependent data
- Title(参考訳): 弱依存データからのロバスト深層学習
- Authors: William Kengne, Modou Wade,
- Abstract要約: 本稿では, 弱い依存度を持つ観測結果から, 非有界損失関数と非有界入力/出力を含む頑健な深層学習を考察する。
これらの境界と$r$の関係を導き、データが任意の順序のモーメント(すなわち$r=infty$)を持つとき、収束率はよく知られた結果に近い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent developments on deep learning established some theoretical properties of deep neural networks estimators. However, most of the existing works on this topic are restricted to bounded loss functions or (sub)-Gaussian or bounded input. This paper considers robust deep learning from weakly dependent observations, with unbounded loss function and unbounded input/output. It is only assumed that the output variable has a finite $r$ order moment, with $r >1$. Non asymptotic bounds for the expected excess risk of the deep neural network estimator are established under strong mixing, and $\psi$-weak dependence assumptions on the observations. We derive a relationship between these bounds and $r$, and when the data have moments of any order (that is $r=\infty$), the convergence rate is close to some well-known results. When the target predictor belongs to the class of H\"older smooth functions with sufficiently large smoothness index, the rate of the expected excess risk for exponentially strongly mixing data is close to or as same as those for obtained with i.i.d. samples. Application to robust nonparametric regression and robust nonparametric autoregression are considered. The simulation study for models with heavy-tailed errors shows that, robust estimators with absolute loss and Huber loss function outperform the least squares method.
- Abstract(参考訳): ディープラーニングに関する最近の進歩は、ディープニューラルネットワーク推定器の理論的性質を確立した。
しかし、この話題に関する既存の研究のほとんどは、有界損失関数や(部分)ガウス的あるいは有界な入力に制限されている。
本稿では, 弱い依存度を持つ観測結果から, 非有界損失関数と非有界入力/出力を含む頑健な深層学習を考察する。
出力変数は、$r > 1$の有限の$r$オーダーモーメントを持つと仮定される。
深部ニューラルネットワーク推定器の予測過剰リスクに対する非漸近境界は、強い混合の下で確立され、観測結果に対する$\psi$-weak依存仮定が確立される。
これらの境界と$r$の関係を導き、データが任意の順序のモーメント(すなわち$r=\infty$)を持つとき、収束率はよく知られた結果に近い。
目標予測器が十分に大きな滑らか度指数を持つH\"古い滑らか度関数のクラスに属する場合、指数関数的に強く混合されたデータに対する予想余剰リスクの比率は、即ちサンプルを用いて得られるものと近いか同じである。
頑健な非パラメトリック回帰とロバストな非パラメトリック自己回帰への応用を考える。
重み付き誤差のあるモデルに対するシミュレーション研究は、絶対損失とフーバー損失関数が最小二乗法より優れていることを示す。
関連論文リスト
- Deep learning from strongly mixing observations: Sparse-penalized regularization and minimax optimality [0.0]
ディープニューラルネットワーク予測器のスパースペナル化正規化について検討する。
正方形と幅広い損失関数を扱う。
論文 参考訳(メタデータ) (2024-06-12T15:21:51Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Neural Network Approximation for Pessimistic Offline Reinforcement
Learning [17.756108291816908]
一般ニューラルネットワーク近似を用いた悲観的オフラインRLの非漸近的推定誤差を提案する。
その結果, 推定誤差は2つの部分から構成されることがわかった。第1は, 部分的に制御可能な集束率でサンプルサイズに所望の速度で0に収束し, 第2は残留制約が厳密であれば無視可能である。
論文 参考訳(メタデータ) (2023-12-19T05:17:27Z) - Penalized deep neural networks estimator with general loss functions
under weak dependence [0.0]
本稿では、弱い依存過程を学習するために、スパースペン化ディープニューラルネットワーク予測器を実行する。
いくつかのシミュレーション結果が提供され、ヴィットーリア大都市圏の粒子状物質予測への応用も検討されている。
論文 参考訳(メタデータ) (2023-05-10T15:06:53Z) - Sparse-penalized deep neural networks estimator under weak dependence [0.0]
我々は、$psi$-weakly依存プロセスの非パラメトリック回帰と分類問題を考察する。
スパースディープニューラルネットワークのペナル化推定を行う。
論文 参考訳(メタデータ) (2023-03-02T16:53:51Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Understanding the Under-Coverage Bias in Uncertainty Estimation [58.03725169462616]
量子レグレッションは、現実の望ましいカバレッジレベルよりもアンファンダーカバー(enmphunder-cover)する傾向がある。
我々は、量子レグレッションが固有のアンダーカバーバイアスに悩まされていることを証明している。
我々の理論は、この過大被覆バイアスが特定の高次元パラメータ推定誤差に起因することを明らかにしている。
論文 参考訳(メタデータ) (2021-06-10T06:11:55Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
暗黙のニューラルネットワークは、精度の向上とメモリ消費の大幅な削減を示す。
彼らは不利な姿勢と収束の不安定さに悩まされる。
本論文は,ニューラルネットワークを高機能かつ頑健に設計するための新しい枠組みを提供する。
論文 参考訳(メタデータ) (2021-06-06T18:05:02Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
実用データセットに対する予測の偏見を回避し、頻繁な不確実性を推定する改善された手法を開発している。
私たちの主な貢献は、推定と推論の計算時間をマグニチュードの順序で短縮する収束保証付き信号強度の推定器SLOEです。
論文 参考訳(メタデータ) (2021-03-23T17:48:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。