論文の概要: Distributed Learning for Wi-Fi AP Load Prediction
- arxiv url: http://arxiv.org/abs/2405.05140v1
- Date: Mon, 22 Apr 2024 16:37:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-12 15:40:48.832111
- Title: Distributed Learning for Wi-Fi AP Load Prediction
- Title(参考訳): Wi-Fi AP負荷予測のための分散学習
- Authors: Dariush Salami, Francesc Wilhelmi, Lorenzo Galati-Giordano, Mika Kasslin,
- Abstract要約: 分散学習の2つの基礎、すなわちフェデレートラーニング(FL)と知識蒸留(KD)の適用について検討する。
分散学習により、予測精度を最大93%向上し、通信オーバーヘッドとエネルギーコストを80%削減できることを示す。
- 参考スコア(独自算出の注目度): 1.2057886807886689
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing cloudification and softwarization of networks foster the interplay among multiple independently managed deployments. An appealing reason for such an interplay lies in distributed Machine Learning (ML), which allows the creation of robust ML models by leveraging collective intelligence and computational power. In this paper, we study the application of the two cornerstones of distributed learning, namely Federated Learning (FL) and Knowledge Distillation (KD), on the Wi-Fi Access Point (AP) load prediction use case. The analysis conducted in this paper is done on a dataset that contains real measurements from a large Wi-Fi campus network, which we use to train the ML model under study based on different strategies. Performance evaluation includes relevant aspects for the suitability of distributed learning operation in real use cases, including the predictive performance, the associated communication overheads, or the energy consumption. In particular, we prove that distributed learning can improve the predictive accuracy centralized ML solutions by up to 93% while reducing the communication overheads and the energy cost by 80%.
- Abstract(参考訳): ネットワークのクラウド化とソフトウォール化の増大により、複数の独立して管理されたデプロイメント間の相互作用が促進される。
このような相互作用の魅力ある理由は、分散機械学習(ML)にある。これは、集合知性と計算能力を活用することで、堅牢なMLモデルの作成を可能にする。
本稿では,分散学習の2つの基礎,すなわちフェデレートラーニング(FL)と知識蒸留(KD)のWi-Fiアクセスポイント(AP)負荷予測ユースケースへの適用について検討する。
本稿では,大規模なWi-Fiキャンパスネットワークからの実測値を含むデータセットを用いて解析を行い,異なる戦略に基づいてMLモデルをトレーニングする。
性能評価には、予測性能、関連する通信オーバーヘッド、エネルギー消費など、実際のユースケースにおける分散学習操作の適合性に関する関連する側面が含まれる。
特に,分散学習は,通信オーバーヘッドとエネルギーコストを80%削減しつつ,予測精度を最大93%向上させることができることを示す。
関連論文リスト
- FedMSE: Federated learning for IoT network intrusion detection [0.0]
IoTの台頭によりサイバー攻撃面が拡大し、データ可用性、計算リソース、転送コスト、特にプライバシ保護に関する懸念から、従来の集中型機械学習手法が不十分になった。
Shrink AutoencoderとCentroid One-class Classifier(SAE-CEN)を組み合わせた半教師付きフェデレーション学習モデルを開発した。
このアプローチは,通常のネットワークデータを効果的に表現し,分散戦略における異常を正確に識別することにより侵入検知性能を向上させる。
論文 参考訳(メタデータ) (2024-10-18T02:23:57Z) - Device Sampling and Resource Optimization for Federated Learning in Cooperative Edge Networks [17.637761046608]
フェデレーテッド・ラーニング(FedL)は、サーバによって定期的に集約されたローカルモデルをトレーニングすることで、機械学習(ML)をワーカーデバイスに分散させる。
FedLは、同時代の無線ネットワークの2つの重要な特徴を無視している: (i) ネットワークには異種通信/計算資源が含まれており、 (ii) デバイスのローカルデータ分布にかなりの重複がある可能性がある。
デバイス間オフロード(D2D)によって補完されるインテリジェントデバイスサンプリングにより,これらの要因を共同で考慮する新しい最適化手法を開発した。
論文 参考訳(メタデータ) (2023-11-07T21:17:59Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
本稿では,ベースステーション(BS)とデバイスの両方を活用するセミフェデレーション学習(SemiFL)パラダイムを提案し,中央集権学習(CL)とFLのハイブリッド実装を提案する。
我々はこの難解な問題を解くための2段階のアルゴリズムを提案し、ビームフォーマに閉形式解を提供する。
論文 参考訳(メタデータ) (2023-10-04T03:32:39Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Enhanced Decentralized Federated Learning based on Consensus in
Connected Vehicles [14.80476265018825]
分散システムにおける機械学習(ML)モデルをトレーニングするための新しいパラダイムとして、フェデレートラーニング(FL)が登場している。
我々は,C-DFL (Consensus based Decentralized Federated Learning)を導入し,コネクテッドカーにおけるフェデレーションラーニングに取り組む。
論文 参考訳(メタデータ) (2022-09-22T01:21:23Z) - Mobility-Aware Cluster Federated Learning in Hierarchical Wireless
Networks [81.83990083088345]
我々は,無線ネットワークにおける階層型フェデレーション学習(HFL)アルゴリズムを特徴付ける理論モデルを開発した。
分析の結果,HFLの学習性能は,ハイモービル利用者の学習能力が著しく低下していることが判明した。
これらの問題を回避するため,我々はMACFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-20T10:46:58Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
次世代のワイヤレスネットワークは、エッジデバイスが収集するさまざまな種類のデータを分析する多くの機械学習ツールやアプリケーションを可能にする。
エッジデバイスが生データ交換なしでMLモデルを協調的にトレーニングできるようにする手段として,分散学習と推論技術が提案されている。
本稿では,ワイヤレスエッジネットワーク上で分散学習を効率的に効果的に展開する方法を包括的に研究する。
論文 参考訳(メタデータ) (2021-04-05T20:57:56Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
本稿では,マルチアクセスエッジコンピューティングサーバにおいて,複数のフェデレーション付き学習サービスの新たなモデルについて検討する。
共同資源最適化とハイパーラーニング率制御の問題,すなわちMS-FEDLを提案する。
シミュレーションの結果,提案アルゴリズムの収束性能を実証した。
論文 参考訳(メタデータ) (2020-11-25T01:29:41Z) - Ternary Compression for Communication-Efficient Federated Learning [17.97683428517896]
フェデレートされた学習は、プライバシ保護とセキュアな機械学習に対する潜在的なソリューションを提供する。
本稿では,第3次フェデレーション平均化プロトコル(T-FedAvg)を提案する。
その結果,提案したT-FedAvgは通信コストの低減に有効であり,非IIDデータの性能も若干向上できることがわかった。
論文 参考訳(メタデータ) (2020-03-07T11:55:34Z) - Private and Communication-Efficient Edge Learning: A Sparse Differential
Gaussian-Masking Distributed SGD Approach [11.876314605344405]
分散エッジ学習のための分散勾配法を提案する。
本研究では,SDM-DSGDが2桁のオーダーで基本的トレーニング・プライバシトレードオフを改善することを示す。
論文 参考訳(メタデータ) (2020-01-12T03:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。