論文の概要: Performance Analysis of Decentralized Federated Learning Deployments
- arxiv url: http://arxiv.org/abs/2503.11828v1
- Date: Fri, 14 Mar 2025 19:37:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:28:10.148978
- Title: Performance Analysis of Decentralized Federated Learning Deployments
- Title(参考訳): 分散型フェデレーション学習システムの性能解析
- Authors: Chengyan Jiang, Jiamin Fan, Talal Halabi, Israat Haque,
- Abstract要約: これらの課題に対処するために、分散フェデレートラーニング(DFL)が導入されている。
中央サーバに頼ることなく、参加するデバイス間の直接的なコラボレーションを促進する。
本研究は、DFLモデルの収束と一般化能力に影響を与える決定的な要因について考察する。
- 参考スコア(独自算出の注目度): 1.7249361224827533
- License:
- Abstract: The widespread adoption of smartphones and smart wearable devices has led to the widespread use of Centralized Federated Learning (CFL) for training powerful machine learning models while preserving data privacy. However, CFL faces limitations due to its overreliance on a central server, which impacts latency and system robustness. Decentralized Federated Learning (DFL) is introduced to address these challenges. It facilitates direct collaboration among participating devices without relying on a central server. Each device can independently connect with other devices and share model parameters. This work explores crucial factors influencing the convergence and generalization capacity of DFL models, emphasizing network topologies, non-IID data distribution, and training strategies. We first derive the convergence rate of different DFL model deployment strategies. Then, we comprehensively analyze various network topologies (e.g., linear, ring, star, and mesh) with different degrees of non-IID data and evaluate them over widely adopted machine learning models (e.g., classical, deep neural networks, and Large Language Models) and real-world datasets. The results reveal that models converge to the optimal one for IID data. However, the convergence rate is inversely proportional to the degree of non-IID data distribution. Our findings will serve as valuable guidelines for designing effective DFL model deployments in practical applications.
- Abstract(参考訳): スマートフォンやスマートウェアラブルデバイスの普及により、データプライバシを保護しながら強力な機械学習モデルのトレーニングにCFL(Centralized Federated Learning)が広く使用されている。
しかし、CFLは中央サーバーへの過度な依存のために制限に直面しており、レイテンシとシステムの堅牢性に影響を与える。
これらの課題に対処するために、分散フェデレートラーニング(DFL)が導入されている。
中央サーバに頼ることなく、参加するデバイス間の直接的なコラボレーションを促進する。
各デバイスは独立して他のデバイスに接続し、モデルパラメータを共有することができる。
本研究は,DFLモデルの収束と一般化能力,ネットワークトポロジ,非IIDデータ分散,トレーニング戦略に影響を及ぼす決定的要因について検討する。
まず、異なるDFLモデル配置戦略の収束率を導出する。
そして, 様々なネットワークトポロジ(リニア, リング, スター, メッシュ)を非IIDデータで包括的に解析し, 広く採用されている機械学習モデル(古典的, ディープニューラルネットワーク, 大規模言語モデル)と実世界のデータセットで評価する。
その結果、モデルがIDデータに対して最適なモデルに収束していることが判明した。
しかし、収束速度は非IIDデータ分布の度合いに逆比例する。
本研究は,実用アプリケーションにおける効果的なDFLモデル展開設計のための貴重なガイドラインとして機能する。
関連論文リスト
- Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks [3.536605202672355]
フェデレーション学習により、エッジデバイスは、データのローカライズを維持しながら、データのプライバシを維持しながら、グローバルモデルを協調的にトレーニングすることが可能になる。
我々は,AI強化データ拡張と均衡サンプリング戦略により,IIDからIDDへの非IIDデータ分布を近似する,フェデレーション最適化技術のための新しいプラグインを提案する。
論文 参考訳(メタデータ) (2024-10-31T11:13:47Z) - CDFL: Efficient Federated Human Activity Recognition using Contrastive Learning and Deep Clustering [12.472038137777474]
HAR(Human Activity Recognition)は、多様なセンサーからのデータを介し、人間の行動の自動化とインテリジェントな識別に不可欠である。
中央サーバー上のデータを集約し、集中処理を行うことによる従来の機械学習アプローチは、メモリ集約であり、プライバシの懸念を高める。
本研究は,画像ベースHARのための効率的なフェデレーション学習フレームワークCDFLを提案する。
論文 参考訳(メタデータ) (2024-07-17T03:17:53Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
フェデレーションエッジインテリジェンス(FEI)システムにおけるリアルタイム機械学習について検討する。
FEIシステムは異種通信と計算資源分布を示す。
本稿では,共有MLモデルの協調学習における全体の実行時間を最小化するために,時間依存型フェデレーションラーニング(TS-FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-26T08:13:22Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
ネットワークデバイス間での分散機械学習を実現するために、フェデレートラーニング(FL)が提案されている。
デバイス上のストレージがFLの性能に与える影響はまだ調査されていない。
本研究では,デバイス上のストレージを限定したFLのオンラインデータ選択について検討する。
論文 参考訳(メタデータ) (2022-09-01T03:27:33Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
協調エッジ学習(CE-FL)は、分散機械学習アーキテクチャである。
CE-FLの過程をモデル化し,分析訓練を行った。
実世界のテストベッドから収集したデータを用いて,本フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2022-03-26T00:41:57Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z) - Spatio-Temporal Federated Learning for Massive Wireless Edge Networks [23.389249751372393]
エッジサーバと多数のモバイルデバイス(クライアント)は、モバイルデバイスが収集した膨大なデータをエッジサーバに転送することなく、グローバルモデルを共同で学習する。
提案手法は,STFLに参加する予定の様々なモバイルデバイスからの学習更新の空間的および時間的相関を利用している。
収束性能を用いてSTFLの学習能力を研究するために,STFLの分析フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T16:46:45Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
IoT(Internet of Things)デバイスは、収集したデータを中央のコントローラに送信することができず、機械学習モデルをトレーニングすることができる。
GoogleのセミナルFLアルゴリズムでは、すべてのデバイスを中央コントローラに直接接続する必要がある。
本稿では,コラボレーティブFL(CFL)と呼ばれる新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-03T20:00:02Z) - Ternary Compression for Communication-Efficient Federated Learning [17.97683428517896]
フェデレートされた学習は、プライバシ保護とセキュアな機械学習に対する潜在的なソリューションを提供する。
本稿では,第3次フェデレーション平均化プロトコル(T-FedAvg)を提案する。
その結果,提案したT-FedAvgは通信コストの低減に有効であり,非IIDデータの性能も若干向上できることがわかった。
論文 参考訳(メタデータ) (2020-03-07T11:55:34Z) - Federated Learning with Cooperating Devices: A Consensus Approach for
Massive IoT Networks [8.456633924613456]
分散システムにおける機械学習モデルをトレーニングするための新しいパラダイムとして、フェデレートラーニング(FL)が登場している。
提案するFLアルゴリズムは,ネットワーク内のデータ操作を行うデバイスとの協調を利用して,完全に分散された(あるいはサーバレス)学習手法を提案する。
このアプローチは、分散接続とコンピューティングを特徴とするネットワークを超えて、5G 内で FL を統合するための基盤となる。
論文 参考訳(メタデータ) (2019-12-27T15:16:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。