myAURA: Personalized health library for epilepsy management via knowledge graph sparsification and visualization
- URL: http://arxiv.org/abs/2405.05229v2
- Date: Fri, 10 May 2024 18:05:44 GMT
- Title: myAURA: Personalized health library for epilepsy management via knowledge graph sparsification and visualization
- Authors: Rion Brattig Correia, Jordan C. Rozum, Leonard Cross, Jack Felag, Michael Gallant, Ziqi Guo, Bruce W. Herr II, Aehong Min, Deborah Stungis Rocha, Xuan Wang, Katy Börner, Wendy Miller, Luis M. Rocha,
- Abstract summary: myAURA is an application designed to aid epilepsy patients, caregivers, and researchers in making decisions about care and self-management.
MyAURA rests on the federation of heterogeneous data resources relevant to epilepsy, such as biomedical databases, social media, and electronic health records.
- Score: 4.25313339005458
- License:
- Abstract: Objective: We report the development of the patient-centered myAURA application and suite of methods designed to aid epilepsy patients, caregivers, and researchers in making decisions about care and self-management. Materials and Methods: myAURA rests on the federation of an unprecedented collection of heterogeneous data resources relevant to epilepsy, such as biomedical databases, social media, and electronic health records. A generalizable, open-source methodology was developed to compute a multi-layer knowledge graph linking all this heterogeneous data via the terms of a human-centered biomedical dictionary. Results: The power of the approach is first exemplified in the study of the drug-drug interaction phenomenon. Furthermore, we employ a novel network sparsification methodology using the metric backbone of weighted graphs, which reveals the most important edges for inference, recommendation, and visualization, such as pharmacology factors patients discuss on social media. The network sparsification approach also allows us to extract focused digital cohorts from social media whose discourse is more relevant to epilepsy or other biomedical problems. Finally, we present our patient-centered design and pilot-testing of myAURA, including its user interface, based on focus groups and other stakeholder input. Discussion: The ability to search and explore myAURA's heterogeneous data sources via a sparsified multi-layer knowledge graph, as well as the combination of those layers in a single map, are useful features for integrating relevant information for epilepsy. Conclusion: Our stakeholder-driven, scalable approach to integrate traditional and non-traditional data sources, enables biomedical discovery and data-powered patient self-management in epilepsy, and is generalizable to other chronic conditions.
Related papers
- Epidemiology-informed Network for Robust Rumor Detection [59.89351792706995]
We propose a novel Epidemiology-informed Network (EIN) that integrates epidemiological knowledge to enhance performance.
To adapt epidemiology theory to rumor detection, it is expected that each users stance toward the source information will be annotated.
Our experimental results demonstrate that the proposed EIN not only outperforms state-of-the-art methods on real-world datasets but also exhibits enhanced robustness across varying tree depths.
arXiv Detail & Related papers (2024-11-20T00:43:32Z) - Evaluating the Predictive Features of Person-Centric Knowledge Graph Embeddings: Unfolding Ablation Studies [0.757843972001219]
We propose a systematic approach to examine the results of GNN models trained with structured and unstructured information from the MIMIC-III dataset.
We show the robustness of this approach in identifying predictive features in PKGs for the task of readmission prediction.
arXiv Detail & Related papers (2024-08-27T09:48:25Z) - iASiS: Towards Heterogeneous Big Data Analysis for Personalized Medicine [28.917691563659467]
The iASiS infrastructure is able to convert clinical notes into usable data.
Using semantic integration of data gives the opportunity to generate information rich, auditable and reliable.
Data resources for two different disease categories are explored within the iASiS use cases, dementia and lung cancer.
arXiv Detail & Related papers (2024-07-09T10:52:19Z) - Investigation of Customized Medical Decision Algorithms Utilizing Graph Neural Networks [15.04251924479172]
This paper introduces a personalized medical decision algorithm utilizing graph neural network (GNN)
The proposed personalized medical decision algorithm showed significantly superior performance in terms of disease prediction accuracy, treatment effect evaluation and patient risk stratification.
arXiv Detail & Related papers (2024-05-23T04:30:41Z) - Simplicity within biological complexity [0.0]
We survey the literature and argue for the development of a comprehensive framework for embedding of multi-scale molecular network data.
Network embedding methods map nodes to points in low-dimensional space, so that proximity in the learned space reflects the network's topology-function relationships.
We propose to develop a general, comprehensive embedding framework for multi-omic network data, from models to efficient and scalable software implementation.
arXiv Detail & Related papers (2024-05-15T13:32:45Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Building Flexible, Scalable, and Machine Learning-ready Multimodal
Oncology Datasets [17.774341783844026]
This work proposes Multimodal Integration of Oncology Data System (MINDS)
MINDS is a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources.
By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability.
arXiv Detail & Related papers (2023-09-30T15:44:39Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations.
Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed to create a Knowledge Graph that can be used in real scenarios.
arXiv Detail & Related papers (2022-08-01T18:47:03Z) - Health Status Prediction with Local-Global Heterogeneous Behavior Graph [69.99431339130105]
Estimation of health status can be achieved with various kinds of data streams continuously collected from wearable sensors.
We propose to model the behavior-related multi-source data streams with a local-global graph.
We take experiments on StudentLife dataset, and extensive results demonstrate the effectiveness of our proposed model.
arXiv Detail & Related papers (2021-03-23T11:10:04Z) - Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue
Generation [150.52617238140868]
We propose low-resource medical dialogue generation to transfer the diagnostic experience from source diseases to target ones.
We also develop a Graph-Evolving Meta-Learning framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease.
arXiv Detail & Related papers (2020-12-22T13:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.