iASiS: Towards Heterogeneous Big Data Analysis for Personalized Medicine
- URL: http://arxiv.org/abs/2407.06748v1
- Date: Tue, 9 Jul 2024 10:52:19 GMT
- Title: iASiS: Towards Heterogeneous Big Data Analysis for Personalized Medicine
- Authors: Anastasia Krithara, Fotis Aisopos, Vassiliki Rentoumi, Anastasios Nentidis, Konstantinos Bougatiotis, Maria-Esther Vidal, Ernestina Menasalvas, Alejandro Rodriguez-Gonzalez, Eleftherios G. Samaras, Peter Garrard, Maria Torrente, Mariano Provencio Pulla, Nikos Dimakopoulos, Rui Mauricio, Jordi Rambla De Argila, Gian Gaetano Tartaglia, George Paliouras,
- Abstract summary: The iASiS infrastructure is able to convert clinical notes into usable data.
Using semantic integration of data gives the opportunity to generate information rich, auditable and reliable.
Data resources for two different disease categories are explored within the iASiS use cases, dementia and lung cancer.
- Score: 28.917691563659467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The vision of IASIS project is to turn the wave of big biomedical data heading our way into actionable knowledge for decision makers. This is achieved by integrating data from disparate sources, including genomics, electronic health records and bibliography, and applying advanced analytics methods to discover useful patterns. The goal is to turn large amounts of available data into actionable information to authorities for planning public health activities and policies. The integration and analysis of these heterogeneous sources of information will enable the best decisions to be made, allowing for diagnosis and treatment to be personalised to each individual. The project offers a common representation schema for the heterogeneous data sources. The iASiS infrastructure is able to convert clinical notes into usable data, combine them with genomic data, related bibliography, image data and more, and create a global knowledge base. This facilitates the use of intelligent methods in order to discover useful patterns across different resources. Using semantic integration of data gives the opportunity to generate information that is rich, auditable and reliable. This information can be used to provide better care, reduce errors and create more confidence in sharing data, thus providing more insights and opportunities. Data resources for two different disease categories are explored within the iASiS use cases, dementia and lung cancer.
Related papers
- Data-Centric AI in the Age of Large Language Models [51.20451986068925]
This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs)
We make the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs.
We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization.
arXiv Detail & Related papers (2024-06-20T16:34:07Z) - Building Flexible, Scalable, and Machine Learning-ready Multimodal
Oncology Datasets [17.774341783844026]
This work proposes Multimodal Integration of Oncology Data System (MINDS)
MINDS is a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources.
By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability.
arXiv Detail & Related papers (2023-09-30T15:44:39Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Synthetic data generation for a longitudinal cohort study -- Evaluation,
method extension and reproduction of published data analysis results [0.32593385688760446]
In the health sector, access to individual-level data is often challenging due to privacy concerns.
A promising alternative is the generation of fully synthetic data.
In this study, we use a state-of-the-art synthetic data generation method.
arXiv Detail & Related papers (2023-05-12T13:13:55Z) - Patchwork Learning: A Paradigm Towards Integrative Analysis across
Diverse Biomedical Data Sources [40.32772510980854]
"patchwork learning" (PL) is a paradigm that integrates information from disparate datasets composed of different data modalities.
PL allows the simultaneous utilization of complementary data sources while preserving data privacy.
We present the concept of patchwork learning and its current implementations in healthcare, exploring the potential opportunities and applicable data sources.
arXiv Detail & Related papers (2023-05-10T14:50:33Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
This paper proposes EBOCA, an ontology that describes (i) biomedical domain concepts and associations between them, and (ii) evidences supporting these associations.
Test data coming from a subset of DISNET and automatic association extractions from texts has been transformed to create a Knowledge Graph that can be used in real scenarios.
arXiv Detail & Related papers (2022-08-01T18:47:03Z) - Health Status Prediction with Local-Global Heterogeneous Behavior Graph [69.99431339130105]
Estimation of health status can be achieved with various kinds of data streams continuously collected from wearable sensors.
We propose to model the behavior-related multi-source data streams with a local-global graph.
We take experiments on StudentLife dataset, and extensive results demonstrate the effectiveness of our proposed model.
arXiv Detail & Related papers (2021-03-23T11:10:04Z) - Biomedical Knowledge Graph Refinement and Completion using Graph
Representation Learning and Top-K Similarity Measure [1.4660617536303606]
This work demonstrates learning discrete representations of the integrated biomedical knowledge graph Chem2Bio2RD.
We perform a knowledge graph completion and refinement task using a simple top-K cosine similarity measure between the learned embedding vectors.
arXiv Detail & Related papers (2020-12-18T22:19:57Z) - A Deep Learning Pipeline for Patient Diagnosis Prediction Using
Electronic Health Records [0.5672132510411464]
We develop and publish a Python package to transform public health dataset into easy to access universal format.
We propose two novel model architectures to predict multiple diagnoses simultaneously.
Both models can predict multiple diagnoses simultaneously with high accuracy.
arXiv Detail & Related papers (2020-06-23T14:58:58Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
We propose Gradient-sanitized Wasserstein Generative Adrial Networks (GS-WGAN)
GS-WGAN allows releasing a sanitized form of sensitive data with rigorous privacy guarantees.
We find our approach consistently outperforms state-of-the-art approaches across multiple metrics.
arXiv Detail & Related papers (2020-06-15T10:01:01Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.