論文の概要: An LSTM-Based Chord Generation System Using Chroma Histogram Representations
- arxiv url: http://arxiv.org/abs/2405.05240v1
- Date: Wed, 8 May 2024 17:36:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 13:45:01.174234
- Title: An LSTM-Based Chord Generation System Using Chroma Histogram Representations
- Title(参考訳): クロマヒストグラム表現を用いたLSTMコード生成システム
- Authors: Jack Hardwick,
- Abstract要約: 本稿では,コードの色調ヒストグラム表現を訓練したLSTMモデルを用いて,モノフォニックシンボリックメロディへのコード生成システムを提案する。
クロマ表現は、データセット内の少数の次元を維持しながら、コードラベルベースのアプローチよりも調和的にリッチな生成を約束する。
コヒーレントな長期生成の最先端には達していないが、ケイデンシャルなコード関係を持つダイアトニック生成を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a system for chord generation to monophonic symbolic melodies using an LSTM-based model trained on chroma histogram representations of chords. Chroma representations promise more harmonically rich generation than chord label-based approaches, whilst maintaining a small number of dimensions in the dataset. This system is shown to be suitable for limited real-time use. While it does not meet the state-of-the-art for coherent long-term generation, it does show diatonic generation with cadential chord relationships. The need for further study into chroma histograms as an extracted feature in chord generation tasks is highlighted.
- Abstract(参考訳): 本稿では,コードの色調ヒストグラム表現を訓練したLSTMモデルを用いて,モノフォニックシンボリックメロディへのコード生成システムを提案する。
クロマ表現は、データセット内の少数の次元を維持しながら、コードラベルベースのアプローチよりも調和的にリッチな生成を約束する。
このシステムは、限られたリアルタイム利用に適していることが示されている。
コヒーレントな長期生成の最先端には達していないが、ケイデンシャルなコード関係を持つダイアトニック生成を示す。
コード生成タスクにおける抽出特徴としてのクロマヒストグラムのさらなる研究の必要性を強調した。
関連論文リスト
- An End-to-End Approach for Chord-Conditioned Song Generation [14.951089833579063]
歌唱課題は、歌詞から声楽と伴奏からなる音楽を合成することを目的としている。
この問題を軽減するため,コードから曲生成ネットワークまで,音楽作曲から重要な概念を導入する。
そこで本研究では,CSG(Chord-Conditioned Song Generator)と呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2024-09-10T08:07:43Z) - Multi-view MidiVAE: Fusing Track- and Bar-view Representations for Long
Multi-track Symbolic Music Generation [50.365392018302416]
長い多トラックのシンボリック・ミュージックを効果的にモデル化・生成するVAE手法の先駆者の一つであるMulti-view MidiVAEを提案する。
我々は,ハイブリッドな変分符号化・復号化戦略を用いて,楽器の特徴と調和,および楽曲のグローバルおよびローカルな情報に焦点をあてる。
論文 参考訳(メタデータ) (2024-01-15T08:41:01Z) - TranSG: Transformer-Based Skeleton Graph Prototype Contrastive Learning
with Structure-Trajectory Prompted Reconstruction for Person
Re-Identification [63.903237777588316]
3Dスケルトンデータによる人物再識別(re-ID)は、顕著な優位性を持つ新興トピックである。
既存の方法は通常、生の関節を持つ骨格記述子を設計するか、あるいは骨格配列表現学習を行う。
本稿では,構造軌道を誘導する再構成によるコントラスト学習(TranSG)手法を提案する。
論文 参考訳(メタデータ) (2023-03-13T02:27:45Z) - Multi-instrument Music Synthesis with Spectrogram Diffusion [19.81982315173444]
我々は、MIDIシーケンスから任意の組み合わせの楽器をリアルタイムで生成できるニューラルシンセサイザーの中盤に焦点を当てる。
MIDIはエンコーダ・デコーダ変換器でスペクトログラム、次いでGAN(Generative Adversarial Network)スペクトルインバータでスペクトログラムからオーディオへ分光する。
これは、楽器と音符の任意の組み合わせのための対話的で表現力のあるニューラルシンセシスに向けた、有望な第一歩である。
論文 参考訳(メタデータ) (2022-06-11T03:26:15Z) - Extended Graph Temporal Classification for Multi-Speaker End-to-End ASR [77.82653227783447]
ニューラルネットワークによるラベル遷移とラベル遷移の両方をモデル化するための GTC の拡張を提案する。
例として,多話者音声認識タスクに拡張GTC(GTC-e)を用いる。
論文 参考訳(メタデータ) (2022-03-01T05:02:02Z) - Differential Music: Automated Music Generation Using LSTM Networks with
Representation Based on Melodic and Harmonic Intervals [0.0]
本稿では,LSTMネットワークを用いた自動作曲のための生成AIモデルを提案する。
絶対的なピッチではなく音楽の動きに基づく音楽情報の符号化に新しいアプローチをとる。
実験結果は、音楽やトーンを聴くと約束を示す。
論文 参考訳(メタデータ) (2021-08-23T23:51:08Z) - DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis [53.19363127760314]
DiffSingerは、音楽スコアで調整されたメログラムにノイズを反復的に変換するパラメータ化されたマルコフチェーンです。
中国の歌唱データセットで行った評価は、DiffSingerが最先端のSVSワークを顕著な差で上回っていることを示している。
論文 参考訳(メタデータ) (2021-05-06T05:21:42Z) - Spectrogram Inpainting for Interactive Generation of Instrument Sounds [1.7205106391379026]
個別の楽器音の生成は,音を反復的に形作る新しい独特な方法を導入し,インパインティングに基づく課題として捉えた。
最も重要なことは、私たちはインタラクティブなWebインターフェースをオープンソースにして、アーティストや実践者向けに、新しいクリエイティブな用途に開放することで音を変換します。
論文 参考訳(メタデータ) (2021-04-15T15:17:31Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Auto-decoding Graphs [91.3755431537592]
生成モデルは、潜在コードからグラフを合成することを学ぶ自動デコーダである。
グラフは、おそらく接続パターンを特定するためにトレーニングされた自己アテンションモジュールを使用して合成される。
論文 参考訳(メタデータ) (2020-06-04T14:23:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。