論文の概要: A Review on Fragment-based De Novo 2D Molecule Generation
- arxiv url: http://arxiv.org/abs/2405.05293v1
- Date: Wed, 8 May 2024 09:38:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 15:12:05.309242
- Title: A Review on Fragment-based De Novo 2D Molecule Generation
- Title(参考訳): フラクチャーをベースとしたデノボ2次元分子生成の展望
- Authors: Sergei Voloboev,
- Abstract要約: フラグメントベースの深層生成モデルは、2023年の分子設計ベンチマークにおいて、常に最先端の結果を達成する。
このレビューには、出力品質、生成速度、および特定のモデルの現在の制限の比較が含まれる。
フラグメントベースのモデルを現実世界のアプリケーションにブリッジする将来的な研究の道のりを強調します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of computational molecule generation, an essential task in the discovery of new chemical compounds, fragment-based deep generative models are a leading approach, consistently achieving state-of-the-art results in molecular design benchmarks as of 2023. We present a detailed comparative assessment of their architectures, highlighting their unique approaches to molecular fragmentation and generative modeling. This review also includes comparisons of output quality, generation speed, and the current limitations of specific models. We also highlight promising avenues for future research that could bridge fragment-based models to real-world applications.
- Abstract(参考訳): 計算分子生成の分野では、新しい化合物の発見における重要な課題として、フラグメントベースの深層生成モデルが主要なアプローチであり、2023年の分子設計ベンチマークにおいて、一貫して最先端の成果を達成している。
本稿では, 分子の断片化と生成モデルへのユニークなアプローチを取り上げ, アーキテクチャの詳細な比較評価を行う。
このレビューには、出力品質、生成速度、および特定のモデルの現在の制限の比較も含まれている。
我々はまた、フラグメントベースのモデルを現実世界のアプリケーションに橋渡しする将来の研究への有望な道を強調した。
関連論文リスト
- MolMiner: Transformer architecture for fragment-based autoregressive generation of molecular stories [7.366789601705544]
生成過程の化学的妥当性、解釈可能性、可変分子サイズへの柔軟性は、計算材料設計における生成モデルに残る課題の1つである。
本稿では,分子生成を離散的かつ解釈可能なステップの列に分解する自己回帰的手法を提案する。
この結果から,本モデルでは,提案した多目的目標目標に応じて,生成分布を効果的にバイアスすることができることがわかった。
論文 参考訳(メタデータ) (2024-11-10T22:00:55Z) - Rethinking Molecular Design: Integrating Latent Variable and Auto-Regressive Models for Goal Directed Generation [0.6800113478497425]
我々は、分子の最も単純な表現に戻り、古典的生成的アプローチの見過ごされた制限を調査する。
本稿では, 分子配列の妥当性, 条件生成, スタイル伝達を改善するために, 両者の強みを生かした, 新規な正則化器の形でのハイブリッドモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T11:50:23Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
構造に基づく薬物設計のための拡散型フラグメントワイド自己回帰生成モデル(SBDD)を提案する。
我々はまず,分子の局所構造の整合性を保持する共形モチーフという新しい分子組立戦略を設計する。
次に、タンパク質-リガンド複合体とSE(3)等価な畳み込みネットワークとの相互作用をエンコードし、拡散モデルを用いて分子モチーフ・バイ・モチーフを生成する。
論文 参考訳(メタデータ) (2024-04-02T14:44:02Z) - De Novo Molecular Generation via Connection-aware Motif Mining [197.97528902698966]
我々は、マイニングされた接続認識モチーフに基づいて分子を生成する新しい方法、MiCaMを提案する。
得られたモチーフ語彙は、分子モチーフ(頻繁な断片)だけでなく、それらの接続情報も含む。
マイニングされた接続対応モチーフに基づいて、MiCaMは接続対応ジェネレータを構築し、同時にモチーフをピックアップし、どのように接続されているかを決定する。
論文 参考訳(メタデータ) (2023-02-02T14:40:47Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - A biologically-inspired evaluation of molecular generative machine
learning [17.623886600638716]
分子生成モデル評価のためのバイオインスパイアされた新しいベンチマークを提案する。
本稿では, 創出出力評価のための相補的手法として, レクリエーション指標, 薬物-標的親和性予測, 分子ドッキングを提案する。
論文 参考訳(メタデータ) (2022-08-20T11:01:10Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Learning to Extend Molecular Scaffolds with Structural Motifs [15.78749196233448]
MoLeRはグラフベースのモデルで、生成手順の初期シードとして足場をサポートする。
そこで本研究では,MoLeRが非制約分子最適化タスクの最先端手法と相容れない性能を示す。
また、いくつかの小さな設計選択が全体的なパフォーマンスに与える影響も示しています。
論文 参考訳(メタデータ) (2021-03-05T18:28:49Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Conditional Constrained Graph Variational Autoencoders for Molecule
Design [70.59828655929194]
本稿では、このキーイデアを最先端のモデルで実装した、条件制約付きグラフ変分オートエンコーダ(CCGVAE)を提案する。
分子生成のために広く採用されている2つのデータセットについて、いくつかの評価指標について改善した結果を示す。
論文 参考訳(メタデータ) (2020-09-01T21:58:07Z) - A Systematic Assessment of Deep Learning Models for Molecule Generation [70.59828655929194]
薬物発見のための生成モデル評価のための広範囲なテストベッドを提案する。
文献で提案した多くのモデルから得られた結果について述べる。
論文 参考訳(メタデータ) (2020-08-20T19:13:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。