論文の概要: QuaLLM: An LLM-based Framework to Extract Quantitative Insights from Online Forums
- arxiv url: http://arxiv.org/abs/2405.05345v1
- Date: Wed, 8 May 2024 18:20:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 15:02:12.523870
- Title: QuaLLM: An LLM-based Framework to Extract Quantitative Insights from Online Forums
- Title(参考訳): QuaLLM:オンラインフォーラムから定量的洞察を抽出するLLMベースのフレームワーク
- Authors: Varun Nagaraj Rao, Eesha Agarwal, Samantha Dalal, Dan Calacci, Andrés Monroy-Hernández,
- Abstract要約: 本研究は,オンラインフォーラム上でテキストデータから量的洞察を分析し,抽出する新しいフレームワークであるQuaLLMを紹介する。
このフレームワークを適用して、Redditの2つのライドシェアワーカーコミュニティからの100万以上のコメントを分析しました。
- 参考スコア(独自算出の注目度): 10.684484559041284
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online discussion forums provide crucial data to understand the concerns of a wide range of real-world communities. However, the typical qualitative and quantitative methods used to analyze those data, such as thematic analysis and topic modeling, are infeasible to scale or require significant human effort to translate outputs to human readable forms. This study introduces QuaLLM, a novel LLM-based framework to analyze and extract quantitative insights from text data on online forums. The framework consists of a novel prompting methodology and evaluation strategy. We applied this framework to analyze over one million comments from two Reddit's rideshare worker communities, marking the largest study of its type. We uncover significant worker concerns regarding AI and algorithmic platform decisions, responding to regulatory calls about worker insights. In short, our work sets a new precedent for AI-assisted quantitative data analysis to surface concerns from online forums.
- Abstract(参考訳): オンラインディスカッションフォーラムは、幅広い現実世界のコミュニティの懸念を理解するために重要なデータを提供する。
しかし、主題分析やトピックモデリングなど、これらのデータを分析するのに使用される定性的で定量的な手法は、人間の読みやすい形式に出力を変換するためには、スケールや多大な人的努力が不要である。
本研究は,オンラインフォーラム上でテキストデータから定量的洞察を抽出する新しいLCMベースのフレームワークであるQuaLLMを紹介する。
フレームワークは、新しいプロンプト方法論と評価戦略から成り立っている。
このフレームワークを適用して、Redditの2つのライドシェアワーカーコミュニティからの100万以上のコメントを分析しました。
AIとアルゴリズムのプラットフォーム決定に関する重要な労働者の懸念を明らかにし、労働者の洞察に関する規制の要求に応えました。
簡単に言うと、我々の研究は、オンラインフォーラムから懸念に答えるためにAIによる定量的データ分析の新しい先例を定めている。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Paired Completion: Flexible Quantification of Issue-framing at Scale with LLMs [0.41436032949434404]
我々は,大規模なテキストデータセット内の問題フレーミングと物語分析のための新しい検出手法を開発し,厳密に評価する。
問題フレーミングは大きなコーパスにおいて, 与えられた問題に対して, いずれの視点でも, 確実に, 効率的に検出できることを示す。
論文 参考訳(メタデータ) (2024-08-19T07:14:15Z) - Interactive Topic Models with Optimal Transport [75.26555710661908]
ラベル名監視型トピックモデリングのためのアプローチとして,EdTMを提案する。
EdTMは、LM/LLMベースのドキュメントトピック親和性を活用しながら、代入問題としてのトピックモデリングをモデル化する。
論文 参考訳(メタデータ) (2024-06-28T13:57:27Z) - Concept Induction: Analyzing Unstructured Text with High-Level Concepts Using LLooM [16.488296856867937]
非構造化テキストから高レベルな概念を生成する計算プロセスである概念帰納法を導入する。
本稿では,大規模な言語モデルを用いてサンプルテキストを反復的に合成する概念帰納アルゴリズムLLooMを提案する。
LLooMのコンセプトは、品質とデータカバレッジの観点から、従来のトピックモデルのテクニックにより改善されていることが分かりました。
論文 参考訳(メタデータ) (2024-04-18T15:26:02Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Machine-assisted quantitizing designs: augmenting humanities and social sciences with artificial intelligence [0.0]
大規模言語モデル(LLM)は、人文科学や社会科学におけるデータ分析をスケールアップする前例のない機会であることが示された。
設計原則を定量化し、変換し、言語学から特徴分析し、人間の専門知識と機械のスケーラビリティを透過的に統合する混合手法を構築します。
このアプローチは、1ダース以上のLDM支援ケーススタディで議論され、9つの多様な言語、複数の規律、タスクをカバーしている。
論文 参考訳(メタデータ) (2023-09-24T14:21:50Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Exploring the Power of Topic Modeling Techniques in Analyzing Customer
Reviews: A Comparative Analysis [0.0]
大量のテキストデータをオンラインで分析するために、機械学習と自然言語処理アルゴリズムがデプロイされている。
本研究では,顧客レビューに特化して用いられる5つのトピックモデリング手法について検討・比較する。
以上の結果から,BERTopicはより意味のあるトピックを抽出し,良好な結果を得ることができた。
論文 参考訳(メタデータ) (2023-08-19T08:18:04Z) - Can Large Language Models emulate an inductive Thematic Analysis of
semi-structured interviews? An exploration and provocation on the limits of
the approach and the model [0.0]
本稿では, GPT 3.5-Turboモデルを用いて, 帰納的テーマ解析のいくつかの側面をエミュレートした実験結果と考察を行った。
本論文の目的は, 定性解析における人間アナリストの代替ではなく, LLMデータ操作のいくつかの要素がある程度の定性研究を支援することができるかを知ることである。
論文 参考訳(メタデータ) (2023-05-22T13:16:07Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。