論文の概要: Machine-assisted quantitizing designs: augmenting humanities and social sciences with artificial intelligence
- arxiv url: http://arxiv.org/abs/2309.14379v2
- Date: Sun, 20 Oct 2024 12:00:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:15:20.713301
- Title: Machine-assisted quantitizing designs: augmenting humanities and social sciences with artificial intelligence
- Title(参考訳): 機械支援量子化設計:人工知能による人文科学と社会科学の強化
- Authors: Andres Karjus,
- Abstract要約: 大規模言語モデル(LLM)は、人文科学や社会科学におけるデータ分析をスケールアップする前例のない機会であることが示された。
設計原則を定量化し、変換し、言語学から特徴分析し、人間の専門知識と機械のスケーラビリティを透過的に統合する混合手法を構築します。
このアプローチは、1ダース以上のLDM支援ケーススタディで議論され、9つの多様な言語、複数の規律、タスクをカバーしている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The increasing capacities of large language models (LLMs) have been shown to present an unprecedented opportunity to scale up data analytics in the humanities and social sciences, by automating complex qualitative tasks otherwise typically carried out by human researchers. While numerous benchmarking studies have assessed the analytic prowess of LLMs, there is less focus on operationalizing this capacity for inference and hypothesis testing. Addressing this challenge, a systematic framework is argued for here, building on mixed methods quantitizing and converting design principles, and feature analysis from linguistics, to transparently integrate human expertise and machine scalability. Replicability and statistical robustness are discussed, including how to incorporate machine annotator error rates in subsequent inference. The approach is discussed and demonstrated in over a dozen LLM-assisted case studies, covering 9 diverse languages, multiple disciplines and tasks, including analysis of themes, stances, ideas, and genre compositions; linguistic and semantic annotation, interviews, text mining and event cause inference in noisy historical data, literary social network construction, metadata imputation, and multimodal visual cultural analytics. Using hypothesis-driven topic classification instead of "distant reading" is discussed. The replications among the experiments also illustrate how tasks previously requiring protracted team effort or complex computational pipelines can now be accomplished by an LLM-assisted scholar in a fraction of the time. Importantly, the approach is not intended to replace, but to augment and scale researcher expertise and analytic practices. With these opportunities in sight, qualitative skills and the ability to pose insightful questions have arguably never been more critical.
- Abstract(参考訳): 大規模言語モデル(LLM)の能力の増大は、人間の研究者が通常行う複雑な定性的タスクを自動化することによって、人文科学や社会科学におけるデータ分析をスケールアップする前例のない機会となることが示されている。
多くのベンチマーク研究がLSMの分析能力を評価してきたが、推論と仮説テストのためのこの能力の運用にはあまり焦点が当てられていない。
ここでは、設計原則を定量化し変換する混合手法と、言語学による特徴分析に基づいて、人間の専門知識と機械スケーラビリティを透過的に統合する、体系的なフレームワークが論じられている。
機械のアノテータ誤り率をその後の推論に組み込む方法を含む、再現性と統計的堅牢性について論じる。
このアプローチは、9つの多様な言語、姿勢、アイデア、ジャンル構成の分析、言語的意味論、インタビュー、テキストマイニング、ノイズの多い歴史的データにおける事象原因推論、文学的ソーシャルネットワークの構築、メタデータインプット、マルチモーダル視覚文化分析などを含む、十数以上のLCM支援ケーススタディで議論され、実証されている。
本論では, 仮説に基づくトピック分類について論じる。
実験の再現は、以前チームの努力や複雑な計算パイプラインを必要としていたタスクが、LLMの支援を受けた研究者によって、ほんの少しの時間でどのように達成できるかも示している。
重要なことは、このアプローチは置き換えることではなく、研究者の専門知識と分析プラクティスを拡大し、拡張することを目的としている。
このような機会を目の当たりにして、質的なスキルと洞察力のある質問を提示する能力は、間違いなくそれ以上に重要なものではなかった。
関連論文リスト
- Evaluation of OpenAI o1: Opportunities and Challenges of AGI [112.0812059747033]
o1-previewは目覚ましい能力を示し、しばしば人間レベルまたは優れたパフォーマンスを実現した。
このモデルは、様々な分野にわたる複雑な推論と知識の統合を必要とするタスクに優れていた。
総合的な結果は、人工知能への大きな進歩を示している。
論文 参考訳(メタデータ) (2024-09-27T06:57:00Z) - BLADE: Benchmarking Language Model Agents for Data-Driven Science [18.577658530714505]
プランニング、メモリ、コード実行機能を備えたLMベースのエージェントは、データ駆動科学をサポートする可能性がある。
本稿では,エージェントの多面的アプローチを自動的に評価するベンチマークBLADEについて述べる。
論文 参考訳(メタデータ) (2024-08-19T02:59:35Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Automating Thematic Analysis: How LLMs Analyse Controversial Topics [5.025737475817937]
大規模言語モデル(LLM)は有望な分析ツールである。
本稿では,LLMが議論の的となっているトピックのテーマ分析をどのようにサポートするかを検討する。
本研究は,人間エージェントと機械エージェントのセマンティック分類における重なり合いと相違点に注目した。
論文 参考訳(メタデータ) (2024-05-11T05:28:25Z) - QuaLLM: An LLM-based Framework to Extract Quantitative Insights from Online Forums [10.684484559041284]
本研究は,オンラインフォーラム上でテキストデータから量的洞察を分析し,抽出する新しいフレームワークであるQuaLLMを紹介する。
このフレームワークを適用して、Redditの2つのライドシェアワーカーコミュニティからの100万以上のコメントを分析しました。
論文 参考訳(メタデータ) (2024-05-08T18:20:03Z) - Can Large Language Models Serve as Data Analysts? A Multi-Agent Assisted
Approach for Qualitative Data Analysis [6.592797748561459]
大規模言語モデル(LLM)は、ソフトウェア工学(SE)における協調的な人間とロボットの相互作用を可能にした
定性的な研究において,新たな拡張性と精度の次元を導入し,SEにおけるデータ解釈手法を変革する可能性がある。
論文 参考訳(メタデータ) (2024-02-02T13:10:46Z) - Exploring the Potential of Large Language Models in Computational Argumentation [54.85665903448207]
大規模言語モデル (LLM) は、文脈を理解し、自然言語を生成するという印象的な能力を実証している。
この研究は、ChatGPT、Flanモデル、LLaMA2モデルなどのLLMをゼロショットと少数ショットの両方で評価することを目的としている。
論文 参考訳(メタデータ) (2023-11-15T15:12:15Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational
Finance Question Answering [70.6359636116848]
本稿では,対話型質問応答における数値推論の連鎖を研究するために,新しい大規模データセットConvFinQAを提案する。
我々のデータセットは、現実世界の会話において、長距離で複雑な数値推論パスをモデル化する上で大きな課題となる。
論文 参考訳(メタデータ) (2022-10-07T23:48:50Z) - AR-LSAT: Investigating Analytical Reasoning of Text [57.1542673852013]
テキストの分析的推論の課題を研究し、1991年から2016年までのロースクール入学試験からの質問からなる新しいデータセットを紹介します。
我々は,この課題をうまくこなすために必要な知識理解と推論能力を分析する。
論文 参考訳(メタデータ) (2021-04-14T02:53:32Z) - Automatic coding of students' writing via Contrastive Representation
Learning in the Wasserstein space [6.884245063902909]
本研究は,学生の文章の質的分析を支援する統計的機械学習(ML)手法を構築するためのステップである。
MLアルゴリズムは,人間解析のラタ間信頼性に近づいた。
論文 参考訳(メタデータ) (2020-11-26T16:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。