論文の概要: Mitigating Exaggerated Safety in Large Language Models
- arxiv url: http://arxiv.org/abs/2405.05418v2
- Date: Thu, 29 Aug 2024 14:50:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 19:08:38.953627
- Title: Mitigating Exaggerated Safety in Large Language Models
- Title(参考訳): 大規模言語モデルにおける過大な安全性の軽減
- Authors: Ruchira Ray, Ruchi Bhalani,
- Abstract要約: 26.1%の安全プロンプトは危険と誤分類され、拒否された。
XSTestデータセットプロンプトの組み合わせに加えて、インタラクティブ、コンテキスト、少数ショットプロンプトも使用しています。
これらの促進策を組み合わせることで、全体の92.9%の過大な安全行動を軽減することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the popularity of Large Language Models (LLMs) grow, combining model safety with utility becomes increasingly important. The challenge is making sure that LLMs can recognize and decline dangerous prompts without sacrificing their ability to be helpful. The problem of "exaggerated safety" demonstrates how difficult this can be. To reduce excessive safety behaviours -- which was discovered to be 26.1% of safe prompts being misclassified as dangerous and refused -- we use a combination of XSTest dataset prompts as well as interactive, contextual, and few-shot prompting to examine the decision bounds of LLMs such as Llama2, Gemma Command R+, and Phi-3. We find that few-shot prompting works best for Llama2, interactive prompting works best Gemma, and contextual prompting works best for Command R+ and Phi-3. Using a combination of these prompting strategies, we are able to mitigate exaggerated safety behaviors by an overall 92.9% across all LLMs. Our work presents a multiple prompting strategies to jailbreak LLMs' decision-making processes, allowing them to navigate the tight line between refusing unsafe prompts and remaining helpful.
- Abstract(参考訳): LLM(Large Language Models)の人気が高まるにつれて、モデルの安全性とユーティリティを組み合わせることがますます重要になっている。
課題は、LLMが危険なプロンプトを認識して減らすのに役立てる能力を犠牲にすることなく、確実にできることです。
過大な安全性”という問題は、これがいかに難しいかを示している。
安全プロンプトの26.1%が危険で拒否されていることが判明した過剰な安全性行動を減らすために、私たちは、XSTestデータセットプロンプトと、対話的、文脈的、数発のプロンプトを組み合わせて、Llama2、Gemma Command R+、Phi-3などのLLMの決定境界を調べる。
Llama2には、対話的プロンプトはGemmaに、コンテキスト的プロンプトはCommand R+とPhi-3に最適です。
これらのプロンプト戦略を組み合わせることで、全LSM全体の92.9%の過大な安全行動を軽減することができる。
我々の研究は、LLMの意思決定プロセスをジェイルブレイクし、安全でないプロンプトを排除し、有効なままでいる間に、厳密な線をナビゲートする、複数のプロンプト戦略を提示しています。
関連論文リスト
- Diversity Helps Jailbreak Large Language Models [16.34618038553998]
私たちは、大きな言語モデルが以前のコンテキストから逸脱する能力を活用する強力なjailbreakテクニックを発見しました。
LLMに以前の攻撃を逸脱して難読化するように指示するだけで、我々の手法は既存の手法よりも劇的に優れている。
この啓示は、現在のLLM安全性トレーニングにおいて重大な欠陥を露呈しており、既存の手法は脆弱性を取り除くのではなく、単に脆弱性を隠蔽するものであることを示唆している。
論文 参考訳(メタデータ) (2024-11-06T19:39:48Z) - Multi-round jailbreak attack on large language models [2.540971544359496]
私たちは"ジェイルブレイク"攻撃をよりよく理解するために、マルチラウンドのジェイルブレイクアプローチを導入します。
この方法は危険なプロンプトを書き換え、有害でない一連のサブクエストに分解する。
実験の結果,ラマ2-7Bは94%の成功率を示した。
論文 参考訳(メタデータ) (2024-10-15T12:08:14Z) - Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context [49.13497493053742]
本研究は,無意味な接尾辞攻撃を状況駆動型文脈書き換えによって意味のあるプロンプトに変換することを検討する。
我々は、独立して意味のある敵の挿入と映画から派生した状況を組み合わせて、LLMを騙せるかどうかを確認します。
当社のアプローチでは,オープンソースとプロプライエタリなLLMの両方で,状況駆動型攻撃を成功させることが実証されている。
論文 参考訳(メタデータ) (2024-07-19T19:47:26Z) - MaPPing Your Model: Assessing the Impact of Adversarial Attacks on LLM-based Programming Assistants [14.947665219536708]
本稿では,攻撃者がプログラムタスクのプロンプトに少量のテキストを付加するMalicious Programming Prompt(MaPP)攻撃を紹介する。
我々の迅速な戦略は、LSMが他の方法で正しいコードを書き続けながら脆弱性を追加する可能性があることを示しています。
論文 参考訳(メタデータ) (2024-07-12T22:30:35Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models [6.931433424951554]
大規模言語モデル(LLM)は新たなセキュリティリスクを導入するが、これらのリスクを計測し、削減するための包括的な評価スイートはほとんどない。
LLMのセキュリティリスクと能力を定量化する新しいベンチマークであるBenchmarkNameを提案する。
我々は,GPT-4,Mistral,Meta Llama 370B-Instruct,Code Llamaを含む複数のSOTA (State-of-the-art) LLMを評価した。
論文 参考訳(メタデータ) (2024-04-19T20:11:12Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
本稿では, 連続的な逆接接尾辞埋め込みを一貫性のある, 理解可能なテキストに変換するために, ASETF (Adversarial Suffix Embedding Translation Framework) を提案する。
本手法は,逆接接尾辞の計算時間を著しく短縮し,既存の手法よりもはるかに優れた攻撃成功率を実現する。
論文 参考訳(メタデータ) (2024-02-25T06:46:27Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
表現空間では、入力クエリは通常、安全プロンプトによって「より高い拒絶」方向に移動される。
これらの知見に触発されて,安全性向上,すなわちDROの最適化手法を提案する。
安全性プロンプトを継続的かつトレーニング可能な埋め込みとして扱うことで、DROは、その有害性に応じて、クエリの表現を拒否方向に沿ってあるいは反対に移動させることを学ぶ。
論文 参考訳(メタデータ) (2024-01-31T17:28:24Z) - Causality Analysis for Evaluating the Security of Large Language Models [9.102606258312246]
大規模言語モデル(LLM)は多くの安全クリティカルなアプリケーションで採用されている。
近年の研究では、LSMは相変わらず敵の摂動やトロイア攻撃などの攻撃にさらされていることが示されている。
本稿では, LLMのトークン, 層, ニューロンレベルでの軽度因果解析を行うための枠組みを提案する。
論文 参考訳(メタデータ) (2023-12-13T03:35:43Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z) - Multilingual Jailbreak Challenges in Large Language Models [96.74878032417054]
本研究では,大規模言語モデル(LLM)における多言語ジェイルブレイク問題の存在を明らかにする。
我々は、意図しないシナリオと意図的なシナリオの2つを考えます。
安全な微調整のための多言語学習データを自動的に生成する新しいtextscSelf-Defense フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-10T09:44:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。