Analysis and prevention of AI-based phishing email attacks
- URL: http://arxiv.org/abs/2405.05435v1
- Date: Wed, 8 May 2024 21:40:49 GMT
- Title: Analysis and prevention of AI-based phishing email attacks
- Authors: Chibuike Samuel Eze, Lior Shamir,
- Abstract summary: generative AI can be used to send each potential victim a different email.
We use different machine learning tools to test the ability of automatic text analysis to identify AI-generated phishing emails.
The paper also describes the corpus of AI-generated phishing emails that is made open to the public.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Phishing email attacks are among the most common and most harmful cybersecurity attacks. With the emergence of generative AI, phishing attacks can be based on emails generated automatically, making it more difficult to detect them. That is, instead of a single email format sent to a large number of recipients, generative AI can be used to send each potential victim a different email, making it more difficult for cybersecurity systems to identify the scam email before it reaches the recipient. Here we describe a corpus of AI-generated phishing emails. We also use different machine learning tools to test the ability of automatic text analysis to identify AI-generated phishing emails. The results are encouraging, and show that machine learning tools can identify an AI-generated phishing email with high accuracy compared to regular emails or human-generated scam email. By applying descriptive analytic, the specific differences between AI-generated emails and manually crafted scam emails are profiled, and show that AI-generated emails are different in their style from human-generated phishing email scams. Therefore, automatic identification tools can be used as a warning for the user. The paper also describes the corpus of AI-generated phishing emails that is made open to the public, and can be used for consequent studies. While the ability of machine learning to detect AI-generated phishing email is encouraging, AI-generated phishing emails are different from regular phishing emails, and therefore it is important to train machine learning systems also with AI-generated emails in order to repel future phishing attacks that are powered by generative AI.
Related papers
- Eyes on the Phish(er): Towards Understanding Users' Email Processing Pattern and Mental Models in Phishing Detection [0.4543820534430522]
This study examines how workload affects susceptibility to phishing.
We use eye-tracking technology to observe participants' reading patterns and interactions with phishing emails.
Our results provide concrete evidence that attention to the email sender can reduce phishing susceptibility.
arXiv Detail & Related papers (2024-09-12T02:57:49Z) - Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts [2.6012482282204004]
Phishing, a prevalent cybercrime tactic for decades, remains a significant threat in today's digital world.
This paper aims to analyze the effectiveness of 15 Large Language Models (LLMs) in detecting phishing attempts.
arXiv Detail & Related papers (2024-04-23T19:55:18Z) - ChatSpamDetector: Leveraging Large Language Models for Effective Phishing Email Detection [2.3999111269325266]
This study introduces ChatSpamDetector, a system that uses large language models (LLMs) to detect phishing emails.
By converting email data into a prompt suitable for LLM analysis, the system provides a highly accurate determination of whether an email is phishing or not.
We conducted an evaluation using a comprehensive phishing email dataset and compared our system to several LLMs and baseline systems.
arXiv Detail & Related papers (2024-02-28T06:28:15Z) - Prompted Contextual Vectors for Spear-Phishing Detection [45.07804966535239]
Spear-phishing attacks present a significant security challenge.
We propose a detection approach based on a novel document vectorization method.
Our method achieves a 91% F1 score in identifying LLM-generated spear-phishing emails.
arXiv Detail & Related papers (2024-02-13T09:12:55Z) - Email Summarization to Assist Users in Phishing Identification [1.433758865948252]
Cyber-phishing attacks are more precise, targeted, and tailored by training data to activate only in the presence of specific information or cues.
This work leverages transformer-based machine learning to analyze prospective psychological triggers.
We then amalgamate this information and present it to the user to allow them to (i) easily decide whether the email is "phishy" and (ii) self-learn advanced malicious patterns.
arXiv Detail & Related papers (2022-03-24T23:03:46Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z) - The Threat of Offensive AI to Organizations [52.011307264694665]
This survey explores the threat of offensive AI on organizations.
First, we discuss how AI changes the adversary's methods, strategies, goals, and overall attack model.
Then, through a literature review, we identify 33 offensive AI capabilities which adversaries can use to enhance their attacks.
arXiv Detail & Related papers (2021-06-30T01:03:28Z) - Phishing Detection through Email Embeddings [2.099922236065961]
The problem of detecting phishing emails through machine learning techniques has been discussed extensively in the literature.
In this paper, we crafted a set of phishing and legitimate emails with similar indicators in order to investigate whether these cues are captured or disregarded by email embeddings.
Our results show that using these indicators, email embeddings techniques is effective for classifying emails as phishing or legitimate.
arXiv Detail & Related papers (2020-12-28T21:16:41Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
In the era of deep learning, a user often leverages a third-party machine learning tool to train a deep neural network (DNN) classifier.
In an information embedding attack, an attacker is the provider of a malicious third-party machine learning tool.
In this work, we aim to design information embedding attacks that are verifiable and robust against popular post-processing methods.
arXiv Detail & Related papers (2020-10-26T17:42:42Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
Phishing attacks have become the most used technique in the online scams, initiating more than 91% of cyberattacks, from 2012 onwards.
This study reviews how Phishing and Spear Phishing attacks are carried out by the phishers, through 5 steps which magnify the outcome.
arXiv Detail & Related papers (2020-05-31T18:10:09Z) - Learning with Weak Supervision for Email Intent Detection [56.71599262462638]
We propose to leverage user actions as a source of weak supervision to detect intents in emails.
We develop an end-to-end robust deep neural network model for email intent identification.
arXiv Detail & Related papers (2020-05-26T23:41:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.