Model-Free Robust $φ$-Divergence Reinforcement Learning Using Both Offline and Online Data
- URL: http://arxiv.org/abs/2405.05468v1
- Date: Wed, 8 May 2024 23:52:37 GMT
- Title: Model-Free Robust $φ$-Divergence Reinforcement Learning Using Both Offline and Online Data
- Authors: Kishan Panaganti, Adam Wierman, Eric Mazumdar,
- Abstract summary: We propose a model-free algorithm called Robust $phi$-regularized fitted Q-iteration (RPQ) for learning an $epsilon$-optimal robust policy.
We also introduce the hybrid robust $phi$-regularized reinforcement learning framework to learn an optimal robust policy using both historical data and online sampling.
- Score: 16.995406965407003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The robust $\phi$-regularized Markov Decision Process (RRMDP) framework focuses on designing control policies that are robust against parameter uncertainties due to mismatches between the simulator (nominal) model and real-world settings. This work makes two important contributions. First, we propose a model-free algorithm called Robust $\phi$-regularized fitted Q-iteration (RPQ) for learning an $\epsilon$-optimal robust policy that uses only the historical data collected by rolling out a behavior policy (with robust exploratory requirement) on the nominal model. To the best of our knowledge, we provide the first unified analysis for a class of $\phi$-divergences achieving robust optimal policies in high-dimensional systems with general function approximation. Second, we introduce the hybrid robust $\phi$-regularized reinforcement learning framework to learn an optimal robust policy using both historical data and online sampling. Towards this framework, we propose a model-free algorithm called Hybrid robust Total-variation-regularized Q-iteration (HyTQ: pronounced height-Q). To the best of our knowledge, we provide the first improved out-of-data-distribution assumption in large-scale problems with general function approximation under the hybrid robust $\phi$-regularized reinforcement learning framework. Finally, we provide theoretical guarantees on the performance of the learned policies of our algorithms on systems with arbitrary large state space.
Related papers
- Aligning Large Language Models via Self-Steering Optimization [78.42826116686435]
We introduce Self-Steering Optimization ($SSO$), an algorithm that autonomously generates high-quality preference signals.
$SSO$ maintains the accuracy of signals by ensuring a consistent gap between chosen and rejected responses.
We validate the effectiveness of $SSO$ with two foundation models, Qwen2 and Llama3.1, indicating that it provides accurate, on-policy preference signals.
arXiv Detail & Related papers (2024-10-22T16:04:03Z) - A Nearly Optimal and Low-Switching Algorithm for Reinforcement Learning
with General Function Approximation [66.26739783789387]
We propose a new algorithm, Monotonic Q-Learning with Upper Confidence Bound (MQL-UCB) for reinforcement learning.
MQL-UCB achieves minimax optimal regret of $tildeO(dsqrtHK)$ when $K$ is sufficiently large and near-optimal policy switching cost.
Our work sheds light on designing provably sample-efficient and deployment-efficient Q-learning with nonlinear function approximation.
arXiv Detail & Related papers (2023-11-26T08:31:57Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Double Pessimism is Provably Efficient for Distributionally Robust
Offline Reinforcement Learning: Generic Algorithm and Robust Partial Coverage [15.858892479232656]
We study robust offline reinforcement learning (robust offline RL)
We propose a generic algorithm framework called Doubly Pessimistic Model-based Policy Optimization ($P2MPO$)
We show that $P2MPO$ enjoys a $tildemathcalO(n-1/2)$ convergence rate, where $n$ is the dataset size.
arXiv Detail & Related papers (2023-05-16T17:58:05Z) - Optimization for Robustness Evaluation beyond $\ell_p$ Metrics [11.028091609739738]
Empirical evaluation of deep learning models against adversarial attacks involves solving nontrivial constrained optimization problems.
We introduce a novel framework that blends a general-purpose constrained-optimization solver PyGRANSO, With Constraint-Folding (PWCF) to add reliability and generality to robustness evaluation.
arXiv Detail & Related papers (2022-10-02T20:48:05Z) - First-order Policy Optimization for Robust Markov Decision Process [40.2022466644885]
We consider the problem of solving robust Markov decision process (MDP)
MDP involves a set of discounted, finite state, finite action space MDPs with uncertain transition kernels.
For $(mathbfs,mathbfa)$-rectangular uncertainty sets, we establish several structural observations on the robust objective.
arXiv Detail & Related papers (2022-09-21T18:10:28Z) - Efficient Policy Iteration for Robust Markov Decision Processes via
Regularization [49.05403412954533]
Robust decision processes (MDPs) provide a framework to model decision problems where the system dynamics are changing or only partially known.
Recent work established the equivalence between texttts rectangular $L_p$ robust MDPs and regularized MDPs, and derived a regularized policy iteration scheme that enjoys the same level of efficiency as standard MDPs.
In this work, we focus on the policy improvement step and derive concrete forms for the greedy policy and the optimal robust Bellman operators.
arXiv Detail & Related papers (2022-05-28T04:05:20Z) - Sample Complexity of Robust Reinforcement Learning with a Generative
Model [0.0]
We propose a model-based reinforcement learning (RL) algorithm for learning an $epsilon$-optimal robust policy.
We consider three different forms of uncertainty sets, characterized by the total variation distance, chi-square divergence, and KL divergence.
In addition to the sample complexity results, we also present a formal analytical argument on the benefit of using robust policies.
arXiv Detail & Related papers (2021-12-02T18:55:51Z) - Robust Reinforcement Learning using Least Squares Policy Iteration with
Provable Performance Guarantees [3.8073142980733]
This paper addresses the problem of model-free reinforcement learning for Robust Markov Decision Process (RMDP) with large state spaces.
We first propose the Robust Least Squares Policy Evaluation algorithm, which is a multi-step online model-free learning algorithm for policy evaluation.
We then propose Robust Least Squares Policy Iteration (RLSPI) algorithm for learning the optimal robust policy.
arXiv Detail & Related papers (2020-06-20T16:26:50Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
We propose a practical online method for solving a class of online distributionally robust optimization (DRO) problems.
Our studies demonstrate important applications in machine learning for improving the robustness of networks.
arXiv Detail & Related papers (2020-06-17T20:19:25Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.