論文の概要: Using Machine Translation to Augment Multilingual Classification
- arxiv url: http://arxiv.org/abs/2405.05478v1
- Date: Thu, 9 May 2024 00:31:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 14:32:25.991770
- Title: Using Machine Translation to Augment Multilingual Classification
- Title(参考訳): 拡張多言語分類への機械翻訳の利用
- Authors: Adam King,
- Abstract要約: 複数の言語にまたがる分類課題に対して,機械翻訳を用いて多言語モデルを微調整する効果について検討する。
翻訳されたデータは、多言語分類器をチューニングするのに十分な品質であり、この新規な損失技術は、それなしでチューニングされたモデルよりも幾らか改善できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An all-too-present bottleneck for text classification model development is the need to annotate training data and this need is multiplied for multilingual classifiers. Fortunately, contemporary machine translation models are both easily accessible and have dependable translation quality, making it possible to translate labeled training data from one language into another. Here, we explore the effects of using machine translation to fine-tune a multilingual model for a classification task across multiple languages. We also investigate the benefits of using a novel technique, originally proposed in the field of image captioning, to account for potential negative effects of tuning models on translated data. We show that translated data are of sufficient quality to tune multilingual classifiers and that this novel loss technique is able to offer some improvement over models tuned without it.
- Abstract(参考訳): テキスト分類モデル開発のボトルネックは、トレーニングデータのアノテートの必要性であり、このニーズは多言語分類器に乗じる必要がある。
幸いなことに、現代の機械翻訳モデルは容易にアクセス可能であり、信頼性の高い翻訳品質を持ち、ラベル付きトレーニングデータをある言語から別の言語に翻訳することができる。
本稿では,複数の言語にまたがる分類課題に対して,機械翻訳を用いて多言語モデルを微調整する効果について検討する。
また、画像キャプションの分野で提案された新しい手法の利点について検討し、翻訳データに対するチューニングモデルによる潜在的な負の効果について考察する。
翻訳されたデータは、多言語分類器をチューニングするのに十分な品質であり、この新規な損失技術は、それなしでチューニングされたモデルよりも幾らか改善できることを示す。
関連論文リスト
- Self-Translate-Train: A Simple but Strong Baseline for Cross-lingual Transfer of Large Language Models [31.025371443719404]
言語間転送は、ターゲット言語のパフォーマンスを向上させるために、ソース言語でデータを利用するための有望なテクニックである。
本稿では,自己翻訳トレインと呼ばれる簡易かつ効果的な手法を提案する。
大規模言語モデルの翻訳機能を活用して、ターゲット言語で合成トレーニングデータを生成し、独自の生成されたデータでモデルを微調整する。
論文 参考訳(メタデータ) (2024-06-29T14:40:23Z) - Low-resource neural machine translation with morphological modeling [3.3721926640077804]
ニューラルマシン翻訳(NMT)における形態的モデリングは、オープン語彙機械翻訳を実現するための有望なアプローチである。
低リソース環境における複雑な形態をモデル化するためのフレームワークソリューションを提案する。
パブリックドメインのパラレルテキストを用いた英訳であるKinyarwandaについて,提案手法の評価を行った。
論文 参考訳(メタデータ) (2024-04-03T01:31:41Z) - T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
言語間テキスト分類は通常、様々な言語で事前訓練された大規模多言語言語モデル(LM)に基づいて構築される。
本稿では,古典的な「翻訳とテスト」パイプラインを再考し,翻訳と分類の段階を適切に分離することを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:33:22Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - Adapting Multilingual Speech Representation Model for a New,
Underresourced Language through Multilingual Fine-tuning and Continued
Pretraining [2.3513645401551333]
既存の多言語wav2vec 2.0モデルを新しい言語に適用する可能性を検討する。
この結果から, 継続事前学習がwav2vec 2.0モデルを新しい言語に適応させる最も効果的な方法であることが示唆された。
関連言語の種類や類似した音韻特性を持つ非関連言語で事前訓練されたモデルが利用可能である場合,その言語からの付加データを用いた多言語微調整は,音声認識性能に肯定的な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-01-18T03:57:53Z) - Towards Continual Learning for Multilingual Machine Translation via
Vocabulary Substitution [16.939016405962526]
多言語機械翻訳モデルの言語能力を拡張するための簡単な語彙適応スキームを提案する。
提案手法は大規模データセットに適合し,未知のスクリプトを持つ遠隔言語に適用し,元の言語ペアの翻訳性能をわずかに低下させるだけである。
論文 参考訳(メタデータ) (2021-03-11T17:10:21Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
本稿では,ラベル保存型入力摂動の最大損失を最小限に抑える半教師付き対向学習法を提案する。
多様な言語群に対する文書分類と意図分類において,有効性が著しく向上するのを観察する。
論文 参考訳(メタデータ) (2020-07-29T19:38:35Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
ニューラルネットワーク翻訳(NMT)の多言語モデルは理論的には魅力的であるが、しばしばバイリンガルモデルに劣る。
我々は,多言語NMTが言語ペアをサポートするためにより強力なモデリング能力を必要とすることを論じる。
未知のトレーニング言語ペアの翻訳を強制するために,ランダムなオンライン翻訳を提案する。
論文 参考訳(メタデータ) (2020-04-24T17:21:32Z) - Translation Artifacts in Cross-lingual Transfer Learning [51.66536640084888]
機械翻訳は、既存の言語間モデルに顕著な影響を与える微妙なアーティファクトを導入することができることを示す。
自然言語の推論では、前提と仮説を独立に翻訳することで、それらの間の語彙的重複を減らすことができる。
また、XNLIでは、それぞれ4.3点と2.8点の翻訳とゼロショットのアプローチを改善している。
論文 参考訳(メタデータ) (2020-04-09T17:54:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。