論文の概要: FloorSet -- a VLSI Floorplanning Dataset with Design Constraints of Real-World SoCs
- arxiv url: http://arxiv.org/abs/2405.05480v3
- Date: Mon, 29 Jul 2024 18:34:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 21:43:34.827449
- Title: FloorSet -- a VLSI Floorplanning Dataset with Design Constraints of Real-World SoCs
- Title(参考訳): FloorSet - 実世界のSoCの設計制約付きVLSIフロアプランニングデータセット
- Authors: Uday Mallappa, Hesham Mostafa, Mikhail Galkin, Mariano Phielipp, Somdeb Majumdar,
- Abstract要約: システム・オン・ア・チップ(SoC)とそのサブシステムのフロアプランニングは、物理的設計フローの重要かつ非自明なステップである。
FloorSet -- 合成固定アウトラインフロアプランレイアウトの包括的なデータセットを2つ紹介する。
FloorSetは、大規模制約付き最適化問題の基礎研究を促進することを目的としている。
- 参考スコア(独自算出の注目度): 10.277800264277452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Floorplanning for systems-on-a-chip (SoCs) and its sub-systems is a crucial and non-trivial step of the physical design flow. It represents a difficult combinatorial optimization problem. A typical large scale SoC with 120 partitions generates a search-space of nearly 10E250. As novel machine learning (ML) approaches emerge to tackle such problems, there is a growing need for a modern benchmark that comprises a large training dataset and performance metrics that better reflect real-world constraints and objectives compared to existing benchmarks. To address this need, we present FloorSet -- two comprehensive datasets of synthetic fixed-outline floorplan layouts that reflect the distribution of real SoCs. Each dataset has 1M training samples and 100 test samples where each sample is a synthetic floor-plan. FloorSet-Prime comprises fully-abutted rectilinear partitions and near-optimal wire-length. A simplified dataset that reflects early design phases, FloorSet-Lite comprises rectangular partitions, with under 5 percent white-space and near-optimal wire-length. Both datasets define hard constraints seen in modern design flows such as shape constraints, edge-affinity, grouping constraints, and pre-placement constraints. FloorSet is intended to spur fundamental research on large-scale constrained optimization problems. Crucially, FloorSet alleviates the core issue of reproducibility in modern ML driven solutions to such problems. FloorSet is available as an open-source repository for the research community.
- Abstract(参考訳): システム・オン・ア・チップ(SoC)とそのサブシステムのフロアプランニングは、物理的設計フローの重要かつ非自明なステップである。
これは組合せ最適化の難しさを表している。
120個のパーティションを持つ典型的な大規模SoCは、約10E250の検索空間を生成する。
このような問題に対処するために、新しい機械学習(ML)アプローチが出現するにつれて、既存のベンチマークと比較して現実の制約や目的をよりよく反映する大規模なトレーニングデータセットとパフォーマンスメトリクスを含む、現代的なベンチマークの必要性が高まっている。
このニーズに対処するために、FloorSet -- 実際のSoCの分布を反映した、合成固定アウトラインのフロアプランレイアウトの2つの包括的なデータセットを提供する。
各データセットは100万のトレーニングサンプルと100のテストサンプルを持ち、各サンプルは合成フロアプランである。
FloorSet-Primeは、完全結合された直線分割と、ほぼ最適のワイヤ長からなる。
初期の設計フェーズを反映した単純化されたデータセットであるFloorSet-Liteは、長方形のパーティションで構成され、5%以下のホワイトスペースとほぼ最適ワイヤ長を持つ。
どちらのデータセットも、形状制約、エッジ親和性、グループ化制約、配置前制約など、現代的なデザインフローで見られる厳しい制約を定義している。
FloorSetは、大規模制約付き最適化問題の基礎研究を促進することを目的としている。
重要なことに、FloorSetは、このような問題に対する現代のML駆動ソリューションにおける再現性の中心的な問題を緩和している。
FloorSetは研究コミュニティのためのオープンソースリポジトリとして利用できる。
関連論文リスト
- Active Sampling of Interpolation Points to Identify Dominant Subspaces for Model Reduction [7.818201674097184]
支配的到達可能部分空間と観測可能部分空間を用いた線形構造系のモデル削減について検討する。
すべての可能な点が $-$ であるようなトレーニングセット $-$ が大きければ、これらの部分空間は多くの大規模線形系を解くことで決定できる。
本研究では,与えられたトレーニングセットから数点のみをサンプリングし,それらの部分空間を正確に推定できるアクティブサンプリング戦略を提案する。
論文 参考訳(メタデータ) (2024-09-05T19:59:14Z) - CFBench: A Comprehensive Constraints-Following Benchmark for LLMs [33.19756888719116]
CFBenchは大規模言語モデルのベンチマークに従う大規模な包括的制約である。
200以上の実生活シナリオと50以上のNLPタスクをカバーする1,000のキュレートされたサンプルがある。
CFBenchは実世界の命令から厳密に制約をコンパイルし、制約型のための革新的な体系的なフレームワークを構築する。
論文 参考訳(メタデータ) (2024-08-02T09:03:48Z) - MSD: A Benchmark Dataset for Floor Plan Generation of Building Complexes [6.9924720592711935]
textbfModified Swiss Dwellings (MSD) - 大規模なフロアプランデータセット。
MSDは中規模から大規模の複合住宅の5.3K以上のフロアプランがあり、18.9K以上のアパートをカバーしている。
論文 参考訳(メタデータ) (2024-07-14T08:51:25Z) - 360 Layout Estimation via Orthogonal Planes Disentanglement and Multi-view Geometric Consistency Perception [56.84921040837699]
既存のパノラマ配置推定ソリューションは、垂直圧縮されたシーケンスから部屋の境界を復元し、不正確な結果をもたらす傾向にある。
そこで本稿では,直交平面不整合ネットワーク(DOPNet)を提案し,あいまいな意味論を識別する。
また,水平深度と比表現に適した教師なし適応手法を提案する。
本手法は,単分子配置推定と多視点レイアウト推定の両タスクにおいて,他のSoTAモデルよりも優れる。
論文 参考訳(メタデータ) (2023-12-26T12:16:03Z) - FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in
Realistic Healthcare Settings [51.09574369310246]
Federated Learning(FL)は、センシティブなデータを保持している複数のクライアントが協力して機械学習モデルをトレーニングできる新しいアプローチである。
本稿では,医療分野に重点を置くクロスサイロ・データセット・スイートFLambyを提案し,クロスサイロ・FLの理論と実践のギャップを埋める。
私たちのフレキシブルでモジュラーなスイートによって、研究者は簡単にデータセットをダウンロードし、結果を再現し、研究のためにさまざまなコンポーネントを再利用することができます。
論文 参考訳(メタデータ) (2022-10-10T12:17:30Z) - $\texttt{FedBC}$: Calibrating Global and Local Models via Federated
Learning Beyond Consensus [66.62731854746856]
フェデレートラーニング(FL)では、デバイス全体にわたるモデル更新の集約を通じて、グローバルモデルを協調的に学習する目的は、ローカル情報を通じたパーソナライズという目標に反対する傾向にある。
本研究では,このトレードオフを多基準最適化により定量的にキャリブレーションする。
私たちは、$texttFedBC$が、スイートデータセット間でグローバルおよびローカルモデルのテスト精度のメトリクスのバランスをとることを実証しています。
論文 参考訳(メタデータ) (2022-06-22T02:42:04Z) - Unsupervised Space Partitioning for Nearest Neighbor Search [6.516813715425121]
本稿では,個別の損失関数を用いて分割処理と学習段階を結合するエンドツーエンド学習フレームワークを提案する。
提案したソリューションの重要な利点は、データセットの高価な事前処理を必要としないことです。
提案手法は,最先端空間分割法とユビキタスK平均クラスタリング法に勝ることを示す。
論文 参考訳(メタデータ) (2022-06-16T11:17:03Z) - Data Summarization via Bilevel Optimization [48.89977988203108]
シンプルだが強力なアプローチは、小さなサブセットのデータを操作することだ。
本研究では,コアセット選択を基数制約付き双レベル最適化問題として定式化する汎用コアセットフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-26T09:08:38Z) - Hybrid Federated Learning: Algorithms and Implementation [61.0640216394349]
Federated Learning(FL)は、分散データセットとプライベートデータセットを扱う分散機械学習パラダイムである。
ハイブリッドFLのためのモデルマッチングに基づく新しい問題定式化を提案する。
次に,グローバルモデルとローカルモデルを協調して学習し,完全かつ部分的な特徴量を扱う効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-22T23:56:03Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
データから制約をマイニングするための一般的なフレームワークを提案する。
特に、構造化された出力予測の推論を整数線形プログラミング(ILP)問題とみなす。
提案手法は,9×9のスドクパズルの解法を学習し,基礎となるルールを提供することなく,例からツリー問題を最小限に分散させることが可能であることを示す。
論文 参考訳(メタデータ) (2020-06-18T20:09:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。