Unveiling Higher-Order Topology via Polarized Topological Charges
- URL: http://arxiv.org/abs/2405.05505v3
- Date: Wed, 04 Dec 2024 01:56:01 GMT
- Title: Unveiling Higher-Order Topology via Polarized Topological Charges
- Authors: Wei Jia, Bao-Zong Wang, Ming-Jian Gao, Jun-Hong An,
- Abstract summary: We propose a concept of polarized topological charges to characterize chiral-symmetric HOTPs in momentum space.
Our characterization theory shows that the second-order (third-order) topological phases are determined by a quarter (negative eighth) of the total polarized topological charges.
These polarized topological charges can be measured by pseudospin structures of the systems.
- Score: 5.234883704077005
- License:
- Abstract: Higher-order topological phases (HOTPs) host exotic topological states that go beyond the traditional bulk-boundary correspondence. Up to now, there is still a lack of experimentally measurable momentum-space topological characterization for the HOTPs, which is not conducive to revealing the essential properties of these topological states and also restricts their detection in quantum simulation systems. Here, we propose a concept of polarized topological charges to characterize chiral-symmetric HOTPs in momentum space, which further facilitates a feasible experimental scheme to detect the HOTPs in $^{87}$Rb cold atomic system. Remarkably, our characterization theory not only shows that the second-order (third-order) topological phases are determined by a quarter (negative eighth) of the total polarized topological charges, but also reveals that the higher-order topological phase transitions are identified by the creation or annihilation of polarized topological charges. Particularly, these polarized topological charges can be measured by pseudospin structures of the systems. Due to theoretical simplicity and observational intuitiveness, this work shall advance the broad studies of the HOTPs in both theory and experiment.
Related papers
- Floquet topological phases with time-reversal and space inversion symmetries and dynamical detection of topological charges [6.360473053262561]
It is possible to have strong topological insulator, second-order topological insulator and hybrid-order topological insulator in a single four band system.
This study provides the theoretical basis for novel topological insulator that possess hybrid-order boundary states beyond the conventional regimes.
arXiv Detail & Related papers (2024-06-12T13:10:30Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Unified characterization for higher-order topological phase transitions [11.78759194040717]
We propose a momentum-space topological characterization of the HOTPTs.
Our work opens an avenue to characterize and detect the two types of HOTPTs within a unified framework.
arXiv Detail & Related papers (2022-09-21T14:39:51Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Theory of Anomalous Floquet Higher-Order Topology: Classification,
Characterization, and Bulk-Boundary Correspondence [1.9087335681007476]
We provide a framework to understand anomalous Floquet higher-order topological insulators (AFHOTIs)
Such AFHOTIs are defined by their robust, symmetry-protected corner modes pinned at special quasienergies.
The corner-mode physics of an AFHOTI is found to be generically indicated by 3D Dirac/Weyl-like topological singularities.
arXiv Detail & Related papers (2020-10-15T18:00:01Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer
Graphene/WSe$_2$ Heterostructure [0.4899818550820575]
Topological insulators, along with Chern insulators and Quantum Hall insulator phases, are considered as paradigms for symmetry protected topological phases of matter.
This article reports the experimental realization of the time-reversal invariant helical edge-modes in bilayer graphene/monolayer WSe$$-based heterostructures.
arXiv Detail & Related papers (2020-03-23T14:22:32Z) - Experimental Detection of the Quantum Phases of a Three-Dimensional
Topological Insulator on a Spin Quantum Simulator [4.614115414323219]
We investigate the three-dimensional topological insulators in the AIII (chiral unitary) symmetry class.
We experimentally demonstrate their topological properties, where a dynamical quenching approach is adopted.
As a result, the topological invariants are measured with high precision on the band-inversion surface.
arXiv Detail & Related papers (2020-01-15T03:51:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.