論文の概要: Towards Robust Physical-world Backdoor Attacks on Lane Detection
- arxiv url: http://arxiv.org/abs/2405.05553v1
- Date: Thu, 9 May 2024 05:23:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 14:12:43.917228
- Title: Towards Robust Physical-world Backdoor Attacks on Lane Detection
- Title(参考訳): 車線検出におけるロバストな物理世界バックドア攻撃に向けて
- Authors: Xinwei Zhang, Aishan Liu, Tianyuan Zhang, Siyuan Liang, Xianglong Liu,
- Abstract要約: ディープラーニングに基づく車線検出(LD)は、適応クルーズ制御のような自律走行システムにおいて重要な役割を果たす。
LD上の既存のバックドア攻撃手法は、動的現実シナリオにおいて限られた効果を示す。
本稿では,現実の動的シーン要因の変化に耐えるように設計されたLDの動的シーン適応バックドアアタックであるBadLANEを紹介する。
- 参考スコア(独自算出の注目度): 31.818933392393717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based lane detection (LD) plays a critical role in autonomous driving systems, such as adaptive cruise control. However, it is vulnerable to backdoor attacks. Existing backdoor attack methods on LD exhibit limited effectiveness in dynamic real-world scenarios, primarily because they fail to consider dynamic scene factors, including changes in driving perspectives (e.g., viewpoint transformations) and environmental conditions (e.g., weather or lighting changes). To tackle this issue, this paper introduces BadLANE, a dynamic scene adaptation backdoor attack for LD designed to withstand changes in real-world dynamic scene factors. To address the challenges posed by changing driving perspectives, we propose an amorphous trigger pattern composed of shapeless pixels. This trigger design allows the backdoor to be activated by various forms or shapes of mud spots or pollution on the road or lens, enabling adaptation to changes in vehicle observation viewpoints during driving. To mitigate the effects of environmental changes, we design a meta-learning framework to train meta-generators tailored to different environmental conditions. These generators produce meta-triggers that incorporate diverse environmental information, such as weather or lighting conditions, as the initialization of the trigger patterns for backdoor implantation, thus enabling adaptation to dynamic environments. Extensive experiments on various commonly used LD models in both digital and physical domains validate the effectiveness of our attacks, outperforming other baselines significantly (+25.15\% on average in Attack Success Rate). Our codes will be available upon paper publication.
- Abstract(参考訳): ディープラーニングに基づく車線検出(LD)は、適応クルーズ制御のような自律走行システムにおいて重要な役割を果たす。
しかし、バックドア攻撃には弱い。
既存のLDのバックドア攻撃手法は、運転視点(例えば、視点変換)や環境条件(例えば、天気や照明の変化)の変化など、動的なシーン要因を考慮できないため、動的現実のシナリオにおいて限られた効果を示す。
本稿では,現実の動的シーン要因の変化に対処するために,LDの動的シーン適応バックドアアタックであるBadLANEを紹介する。
運転視点を変えることで生じる課題に対処するため,無形画素からなる非晶質トリガパターンを提案する。
このトリガー設計により、バックドアは道路やレンズ上の泥点や汚染の様々な形態や形状によって活性化され、運転中の車両の視界の変化に適応することができる。
環境変化の影響を軽減するため,異なる環境条件に合わせたメタジェネレータを訓練するためのメタ学習フレームワークを設計する。
これらの発電機は、バックドア注入のためのトリガーパターンの初期化として、気象や照明条件などの多様な環境情報を組み込んだメタトリガーを生成し、動的環境への適応を可能にする。
デジタルドメインと物理ドメインの両方で広く使われているLDモデルに対する大規模な実験は、攻撃の有効性を検証し、他のベースライン(アタック成功率の平均で+25.15\%)を著しく上回った。
私たちのコードは新聞で公開されます。
関連論文リスト
- LanEvil: Benchmarking the Robustness of Lane Detection to Environmental Illusions [61.87108000328186]
レーン検出(LD)は自律走行システムにおいて不可欠な要素であり、適応型クルーズ制御や自動車線センターなどの基本的な機能を提供している。
既存のLDベンチマークは主に、環境錯覚に対するLDモデルの堅牢性を無視し、一般的なケースを評価することに焦点を当てている。
本稿では、LDに対する環境錯覚による潜在的な脅威について検討し、LanEvilの最初の総合ベンチマークを確立する。
論文 参考訳(メタデータ) (2024-06-03T02:12:27Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARDは、火災、洪水、風などの3つの予期せぬ災害シナリオで構成されている。
このベンチマークにより、さまざまなパイプラインで自律エージェントの意思決定能力を評価することができる。
論文 参考訳(メタデータ) (2024-01-23T18:59:43Z) - Dynamic Adversarial Attacks on Autonomous Driving Systems [16.657485186920102]
本稿では,自律走行システムのレジリエンスに挑戦する攻撃機構を提案する。
我々は、他の移動車に搭載された画面に対向パッチを動的に表示することにより、自動運転車の意思決定プロセスを操作する。
我々の実験は、現実の自律走行シナリオにおけるこのような動的敵攻撃の実装が最初に成功したことを実証している。
論文 参考訳(メタデータ) (2023-12-10T04:14:56Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Why Don't You Clean Your Glasses? Perception Attacks with Dynamic
Optical Perturbations [17.761200546223442]
敵の攻撃を物理的世界に適応させることが、攻撃者にとって望ましい。
EvilEyeは、ディスプレイを透過的に利用し、ダイナミックな物理的逆転の例を生成する、中間者認識攻撃である。
論文 参考訳(メタデータ) (2023-07-24T21:16:38Z) - Runtime Stealthy Perception Attacks against DNN-based Adaptive Cruise Control Systems [8.561553195784017]
本稿では,実行時認識攻撃下での深層ニューラルネットワークを用いたACCシステムのセキュリティ評価を行う。
攻撃を誘発する最も重要な時間を選択するための文脈認識戦略を提案する。
提案攻撃の有効性を,実車,公用運転データセット,現実的なシミュレーションプラットフォームを用いて評価した。
論文 参考訳(メタデータ) (2023-07-18T03:12:03Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
自動運転車のような現実のシナリオでは、現実の敵例(RWAE)にもっと注意を払わなければならない。
本稿では,デジタルおよび実世界の敵対パッチの効果を検証し,一般的なSSモデルのロバスト性を詳細に評価する。
論文 参考訳(メタデータ) (2021-08-13T11:49:09Z) - AdaPool: A Diurnal-Adaptive Fleet Management Framework using Model-Free
Deep Reinforcement Learning and Change Point Detection [34.77250498401055]
本稿では,車いすによる乗り合い環境における日中パターンを認識・適応できる適応型モデルフリー深部強化手法を提案する。
本論文では, 配車における適応論理に加えて, 動的かつ需要に応じた車両通行者マッチングと経路計画の枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-01T02:14:01Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
都市運転のような現実の安全クリティカルな目標設定における強化学習(RL)は危険である。
非安全クリティカルな「ソース」環境でエージェントが最初に訓練する「安全クリティカル適応」タスクセットを提案する。
多様な環境における事前経験がリスクを見積もるためにエージェントに装備するという直感に基づくソリューションアプローチであるCARLを提案する。
論文 参考訳(メタデータ) (2020-08-15T01:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。