A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques
- URL: http://arxiv.org/abs/2205.01802v1
- Date: Tue, 3 May 2022 22:13:33 GMT
- Title: A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques
- Authors: Dinuka Ravijaya Piyadigama, Guhanathan Poravi
- Abstract summary: Recommendation Systems allow users to identify trending items among a community while being timely and relevant to the user's expectations.
Deep Learning methods have been brought forward to achieve better quality recommendations.
Researchers have tried to expand on the capabilities of standard recommendation systems to provide the most effective recommendations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommendations Systems allow users to identify trending items among a
community while being timely and relevant to the user's expectations. When the
purpose of various Recommendation Systems differs, the required type of
recommendations also differs for each use case. While one Recommendation System
may focus on recommending popular items, another may focus on recommending
items that are comparable to the user's interests. Content-based filtering,
user-to-user & item-to-item Collaborative filtering, and more recently; Deep
Learning methods have been brought forward by the researchers to achieve better
quality recommendations.
Even though each of these methods has proven to perform well individually,
there have been attempts to push the boundaries of their limitations. Following
a wide range of methods, researchers have tried to expand on the capabilities
of standard recommendation systems to provide the most effective
recommendations to users while being more profitable from a business's
perspective. This has been achieved by taking a hybrid approach when building
models and architectures for Recommendation Systems.
This paper is a review of the novel models & architectures of hybrid
Recommendation Systems. The author identifies possibilities of expanding the
capabilities of baseline models & the advantages and drawbacks of each model
with selected use cases in this review.
Related papers
- Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations [15.143224593682012]
We propose a novel recommendation strategy that combines relevance and diversity by a copula function.
We use diversity as a surrogate of the amount of knowledge obtained by the user while interacting with the system.
Our strategy outperforms several state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-07T13:48:24Z) - Review-based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives [11.835903510784735]
Review-based recommender systems have emerged as a significant sub-field in this domain.
We present a categorization of these systems and summarize the state-of-the-art methods, analyzing their unique features, effectiveness, and limitations.
We propose potential directions for future research, including the integration of multimodal data, multi-criteria rating information, and ethical considerations.
arXiv Detail & Related papers (2024-05-09T05:45:18Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Impression-Aware Recommender Systems [57.38537491535016]
Novel data sources bring new opportunities to improve the quality of recommender systems.
Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research.
We present a systematic literature review on recommender systems using impressions.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - GHRS: Graph-based Hybrid Recommendation System with Application to Movie
Recommendation [0.0]
We propose a recommender system method using a graph-based model associated with the similarity of users' ratings.
By utilizing the advantages of Autoencoder feature extraction, we extract new features based on all combined attributes.
The experimental results on the MovieLens dataset show that the proposed algorithm outperforms many existing recommendation algorithms on recommendation accuracy.
arXiv Detail & Related papers (2021-11-06T10:47:45Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - A Hybrid Recommender System for Recommending Smartphones to Prospective
Customers [0.7310043452300736]
Hybrid recommender systems combine multiple recommendation strategies in different ways to benefit from their complementary advantages.
Some hybrid recommender systems have combined collaborative filtering and content-based approaches to build systems that are more robust.
We propose a hybrid recommender system, which combines Alternative Least Squares (ALS) based collaborative filtering with deep learning to enhance recommendation performance.
arXiv Detail & Related papers (2021-05-26T23:10:51Z) - Designing Explanations for Group Recommender Systems [0.0]
Explanations are used in recommender systems for various reasons.
Developers of recommender systems want to convince users to purchase specific items.
Users should better understand how the recommender system works and why a specific item has been recommended.
arXiv Detail & Related papers (2021-02-24T17:05:39Z) - Survey for Trust-aware Recommender Systems: A Deep Learning Perspective [48.2733163413522]
It becomes critical to embrace a trustworthy recommender system.
This survey provides a systemic summary of three categories of trust-aware recommender systems.
arXiv Detail & Related papers (2020-04-08T02:11:55Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z) - A Bayesian Approach to Conversational Recommendation Systems [60.12942570608859]
We present a conversational recommendation system based on a Bayesian approach.
A case study based on the application of this approach to emphstagend.com, an online platform for booking entertainers, is discussed.
arXiv Detail & Related papers (2020-02-12T15:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.