論文の概要: Joint Edge Optimization Deep Unfolding Network for Accelerated MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2405.05564v1
- Date: Thu, 9 May 2024 05:51:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 14:02:33.709036
- Title: Joint Edge Optimization Deep Unfolding Network for Accelerated MRI Reconstruction
- Title(参考訳): 加速MRI再構成のための結合エッジ最適化深部展開網
- Authors: Yue Cai, Yu Luo, Jie Ling, Shun Yao,
- Abstract要約: 我々はMR画像とエッジの両方に固有の個別正規化器を組み込むだけでなく、協調正規化器を強制してそれらの相関を効果的に確立するジョイントエッジ最適化モデルを構築した。
具体的には、エッジ情報を非エッジ確率マップで定義し、最適化プロセス中に画像再構成を誘導する。
一方、画像やエッジに関連するレギュレータは、それぞれ固有のアプリオリ情報を自動的に学習するために、深く展開するネットワークに組み込まれる。
- 参考スコア(独自算出の注目度): 3.9681863841849623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic Resonance Imaging (MRI) is a widely used imaging technique, however it has the limitation of long scanning time. Though previous model-based and learning-based MRI reconstruction methods have shown promising performance, most of them have not fully utilized the edge prior of MR images, and there is still much room for improvement. In this paper, we build a joint edge optimization model that not only incorporates individual regularizers specific to both the MR image and the edges, but also enforces a co-regularizer to effectively establish a stronger correlation between them. Specifically, the edge information is defined through a non-edge probability map to guide the image reconstruction during the optimization process. Meanwhile, the regularizers pertaining to images and edges are incorporated into a deep unfolding network to automatically learn their respective inherent a-priori information.Numerical experiments, consisting of multi-coil and single-coil MRI data with different sampling schemes at a variety of sampling factors, demonstrate that the proposed method outperforms other compared methods.
- Abstract(参考訳): 磁気共鳴イメージング(MRI)は広く用いられている画像技術であるが、長い走査時間に制限がある。
従来のモデルベースおよび学習ベースのMRI再構成手法は有望な性能を示したが、そのほとんどがMRI画像以前のエッジを十分に活用していないため、まだ改善の余地がたくさんある。
本稿では、MR画像とエッジの両方に固有の個別正規化器を組み込むだけでなく、協調正規化器を強制してそれらの相関関係を効果的に確立する結合エッジ最適化モデルを構築する。
具体的には、エッジ情報を非エッジ確率マップで定義し、最適化プロセス中に画像再構成を誘導する。
一方、画像やエッジに関連するレギュレータは、それぞれ固有のアプリオリ情報を自動的に学習するために、深く展開するネットワークに組み込まれており、様々なサンプリング要因で異なるサンプリング方式のマルチコイルおよびシングルコイルMRIデータからなる数値実験により、提案手法が他の比較手法よりも優れていることを示す。
関連論文リスト
- NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction [3.2088888904556123]
合成MRI画像を用いたCTスキャンによるモノモーダル登録の高速化手法を提案する。
提案手法は有望な結果を示し,いくつかの最先端手法より優れていた。
論文 参考訳(メタデータ) (2023-10-31T16:39:56Z) - Generalized Implicit Neural Representation for Efficient MRI Parallel Imaging Reconstruction [16.63720411275398]
本研究では、MRI PI再構成のための一般化暗黙的神経表現(INR)に基づくフレームワークを提案する。
フレームワークのINRモデルは、完全にサンプリングされたMR画像を空間座標と以前のボクセル固有の特徴の連続関数として扱う。
公開されているMRIデータセットの実験は、複数の加速度因子で画像を再構成する際の提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-12T09:07:03Z) - Dual Arbitrary Scale Super-Resolution for Multi-Contrast MRI [23.50915512118989]
マルチコントラスト超解像 (SR) 再構成により, SR画像の高画質化が期待できる。
放射線技師は、固定スケールではなく任意のスケールでMR画像を拡大することに慣れている。
本稿では,Dual-ArbNetと呼ばれる,暗黙的ニューラル表現に基づくマルチコントラストMRI超解像法を提案する。
論文 参考訳(メタデータ) (2023-07-05T14:43:26Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
マルチコントラスト・スーパーレゾリューション (SR) 再構成により, SR画像の高画質化が期待できる。
既存の手法では、これらの特徴をマッチングし、融合させる効果的なメカニズムが欠如している。
そこで本稿では,トランスフォーマーを利用したマルチスケールコンテキストマッチングとアグリゲーション技術を開発することで,これらの問題を解決する新しいネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-26T01:42:59Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - MR-Contrast-Aware Image-to-Image Translations with Generative
Adversarial Networks [5.3580471186206005]
MR取得パラメータの反復時間とエコー時間に基づいて,画像から画像へ生成する敵ネットワークを訓練する。
提案手法はピーク信号対雑音比と24.48と0.66の構造的類似性を示し,ピクセルベンチマークモデルを大幅に上回っている。
論文 参考訳(メタデータ) (2021-04-03T17:05:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。