Poisoning-based Backdoor Attacks for Arbitrary Target Label with Positive Triggers
- URL: http://arxiv.org/abs/2405.05573v1
- Date: Thu, 9 May 2024 06:45:11 GMT
- Title: Poisoning-based Backdoor Attacks for Arbitrary Target Label with Positive Triggers
- Authors: Binxiao Huang, Jason Chun Lok, Chang Liu, Ngai Wong,
- Abstract summary: Poisoning-based backdoor attacks expose vulnerabilities in the data preparation stage of deep neural network (DNN) training.
We develop a new categorization of triggers inspired by the adversarial technique and develop a multi-label and multi-payload Poisoning-based backdoor attack with Positive Triggers (PPT)
Under both dirty- and clean-label settings, we show empirically that the proposed attack achieves a high attack success rate without sacrificing accuracy across various datasets.
- Score: 8.15496105932744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Poisoning-based backdoor attacks expose vulnerabilities in the data preparation stage of deep neural network (DNN) training. The DNNs trained on the poisoned dataset will be embedded with a backdoor, making them behave well on clean data while outputting malicious predictions whenever a trigger is applied. To exploit the abundant information contained in the input data to output label mapping, our scheme utilizes the network trained from the clean dataset as a trigger generator to produce poisons that significantly raise the success rate of backdoor attacks versus conventional approaches. Specifically, we provide a new categorization of triggers inspired by the adversarial technique and develop a multi-label and multi-payload Poisoning-based backdoor attack with Positive Triggers (PPT), which effectively moves the input closer to the target label on benign classifiers. After the classifier is trained on the poisoned dataset, we can generate an input-label-aware trigger to make the infected classifier predict any given input to any target label with a high possibility. Under both dirty- and clean-label settings, we show empirically that the proposed attack achieves a high attack success rate without sacrificing accuracy across various datasets, including SVHN, CIFAR10, GTSRB, and Tiny ImageNet. Furthermore, the PPT attack can elude a variety of classical backdoor defenses, proving its effectiveness.
Related papers
- DMGNN: Detecting and Mitigating Backdoor Attacks in Graph Neural Networks [30.766013737094532]
We propose DMGNN against out-of-distribution (OOD) and in-distribution (ID) graph backdoor attacks.
DMGNN can easily identify the hidden ID and OOD triggers via predicting label transitions based on counterfactual explanation.
DMGNN far outperforms the state-of-the-art (SOTA) defense methods, reducing the attack success rate to 5% with almost negligible degradation in model performance.
arXiv Detail & Related papers (2024-10-18T01:08:03Z) - Long-Tailed Backdoor Attack Using Dynamic Data Augmentation Operations [50.1394620328318]
Existing backdoor attacks mainly focus on balanced datasets.
We propose an effective backdoor attack named Dynamic Data Augmentation Operation (D$2$AO)
Our method can achieve the state-of-the-art attack performance while preserving the clean accuracy.
arXiv Detail & Related papers (2024-10-16T18:44:22Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
arXiv Detail & Related papers (2024-05-19T14:50:09Z) - Rethinking Graph Backdoor Attacks: A Distribution-Preserving Perspective [33.35835060102069]
Graph Neural Networks (GNNs) have shown remarkable performance in various tasks.
Backdoor attack poisons the graph by attaching backdoor triggers and the target class label to a set of nodes in the training graph.
In this paper, we study a novel problem of unnoticeable graph backdoor attacks with in-distribution (ID) triggers.
arXiv Detail & Related papers (2024-05-17T13:09:39Z) - Can We Trust the Unlabeled Target Data? Towards Backdoor Attack and Defense on Model Adaptation [120.42853706967188]
We explore the potential backdoor attacks on model adaptation launched by well-designed poisoning target data.
We propose a plug-and-play method named MixAdapt, combining it with existing adaptation algorithms.
arXiv Detail & Related papers (2024-01-11T16:42:10Z) - Invisible Backdoor Attacks Using Data Poisoning in the Frequency Domain [8.64369418938889]
We propose a generalized backdoor attack method based on the frequency domain.
It can implement backdoor implantation without mislabeling and accessing the training process.
We evaluate our approach in the no-label and clean-label cases on three datasets.
arXiv Detail & Related papers (2022-07-09T07:05:53Z) - BITE: Textual Backdoor Attacks with Iterative Trigger Injection [24.76186072273438]
Backdoor attacks have become an emerging threat to NLP systems.
By providing poisoned training data, the adversary can embed a "backdoor" into the victim model.
We propose BITE, a backdoor attack that poisons the training data to establish strong correlations between the target label and a set of "trigger words"
arXiv Detail & Related papers (2022-05-25T11:58:38Z) - PoisonedEncoder: Poisoning the Unlabeled Pre-training Data in
Contrastive Learning [69.70602220716718]
We propose PoisonedEncoder, a data poisoning attack to contrastive learning.
In particular, an attacker injects carefully crafted poisoning inputs into the unlabeled pre-training data.
We evaluate five defenses against PoisonedEncoder, including one pre-processing, three in-processing, and one post-processing defenses.
arXiv Detail & Related papers (2022-05-13T00:15:44Z) - PiDAn: A Coherence Optimization Approach for Backdoor Attack Detection
and Mitigation in Deep Neural Networks [22.900501880865658]
Backdoor attacks impose a new threat in Deep Neural Networks (DNNs)
We propose PiDAn, an algorithm based on coherence optimization purifying the poisoned data.
Our PiDAn algorithm can detect more than 90% infected classes and identify 95% poisoned samples.
arXiv Detail & Related papers (2022-03-17T12:37:21Z) - Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks
Trained from Scratch [99.90716010490625]
Backdoor attackers tamper with training data to embed a vulnerability in models that are trained on that data.
This vulnerability is then activated at inference time by placing a "trigger" into the model's input.
We develop a new hidden trigger attack, Sleeper Agent, which employs gradient matching, data selection, and target model re-training during the crafting process.
arXiv Detail & Related papers (2021-06-16T17:09:55Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.