論文の概要: Optimizing E-commerce Search: Toward a Generalizable and Rank-Consistent Pre-Ranking Model
- arxiv url: http://arxiv.org/abs/2405.05606v2
- Date: Mon, 13 May 2024 07:41:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 12:26:59.019076
- Title: Optimizing E-commerce Search: Toward a Generalizable and Rank-Consistent Pre-Ranking Model
- Title(参考訳): 電子商取引検索の最適化 - 一般化可能で一貫性のある事前予約モデルを目指して-
- Authors: Enqiang Xu, Yiming Qiu, Junyang Bai, Ping Zhang, Dadong Miao, Songlin Wang, Guoyu Tang, Lin Liu, Mingming Li,
- Abstract要約: 大規模なeコマースプラットフォームでは、ダウンストリームランキングモジュールのために、前もって製品の大部分をフィルタリングするために、プレグレードフェーズが不可欠である。
1) 製品がトップk内にあるかどうかを予測する複数のバイナリ分類タスクを導入し、共通のポイントワイドランキングモデルでの学習目標の追加を容易にする。2) 製品埋め込みのサブセットを事前トレーニングすることで、すべての製品に対するコントラスト学習による一般化性。
- 参考スコア(独自算出の注目度): 13.573766789458118
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In large e-commerce platforms, search systems are typically composed of a series of modules, including recall, pre-ranking, and ranking phases. The pre-ranking phase, serving as a lightweight module, is crucial for filtering out the bulk of products in advance for the downstream ranking module. Industrial efforts on optimizing the pre-ranking model have predominantly focused on enhancing ranking consistency, model structure, and generalization towards long-tail items. Beyond these optimizations, meeting the system performance requirements presents a significant challenge. Contrasting with existing industry works, we propose a novel method: a Generalizable and RAnk-ConsistEnt Pre-Ranking Model (GRACE), which achieves: 1) Ranking consistency by introducing multiple binary classification tasks that predict whether a product is within the top-k results as estimated by the ranking model, which facilitates the addition of learning objectives on common point-wise ranking models; 2) Generalizability through contrastive learning of representation for all products by pre-training on a subset of ranking product embeddings; 3) Ease of implementation in feature construction and online deployment. Our extensive experiments demonstrate significant improvements in both offline metrics and online A/B test: a 0.75% increase in AUC and a 1.28% increase in CVR.
- Abstract(参考訳): 大規模なeコマースプラットフォームでは、検索システムはリコール、プレランク、ランキングフェーズを含む一連のモジュールで構成されている。
軽量モジュールとして機能するプレグレードフェーズは、ダウンストリームランキングモジュールのために前もって製品の大部分をフィルタリングするために不可欠である。
先行モデルの最適化に向けた産業的な取り組みは、主にランキング一貫性の向上、モデル構造、ロングテールアイテムへの一般化に重点を置いている。
これらの最適化以外にも、システムパフォーマンスの要件を満たすことは重大な課題である。
既存の産業作品とは対照的に,本研究では,ジェネラライザブルとRAnk-ConsistEntプレランキングモデル(GRACE)という新しい手法を提案する。
1) 製品がトップk内にあるかどうかを予測する複数の二分分類タスクを導入してランキングの整合性を高め、共通のポイントワイドランキングモデルにおける学習目標の追加を容易にするランキングモデルにより推定される。
2) 製品埋め込みのサブセットを事前訓練することにより,すべての製品の表現の対照的な学習を通じての一般化可能性
3)機能構築及びオンライン展開における実装の容易化。
大規模な実験では、オフラインメトリクスとオンラインA/Bテストの両方において、AUCが0.75%、CVRが1.28%、大幅な改善が示されている。
関連論文リスト
- Towards More Relevant Product Search Ranking Via Large Language Models: An Empirical Study [14.826942979030356]
大規模言語モデル(LLM)は、モデルトレーニングにおいてラベルと特徴生成の両方に使用される。
LLM出力に異なるシグモイド変換を導入し,ラベリングにおけるレバレンススコアを分極する。
我々の研究は、LEMをeコマース製品検索ランキングモデルトレーニングに統合するための高度な戦略に光を当てている。
論文 参考訳(メタデータ) (2024-09-26T01:38:05Z) - Generative Pre-trained Ranking Model with Over-parameterization at Web-Scale (Extended Abstract) [73.57710917145212]
ランク付け学習は、入力クエリに基づいて関連するWebページを優先順位付けするために、Web検索で広く使われている。
本稿では,これらの課題に対処するために,経験的 UlineSemi-uline Supervised ulinePre-trained (GS2P) モデルを提案する。
我々は,公開データセットと大規模検索エンジンから収集した実世界のデータセットの両方に対して,大規模なオフライン実験を行う。
論文 参考訳(メタデータ) (2024-09-25T03:39:14Z) - RankTower: A Synergistic Framework for Enhancing Two-Tower Pre-Ranking Model [0.0]
大規模ランキングシステムでは、効率性と効率性のバランスをとるためにカスケードアーキテクチャが広く採用されている。
オンラインレイテンシの制約に従うために、効率性と精度のバランスを維持することは、プレグレードモデルにとって不可欠である。
そこで我々は,ユーザとイテムのインタラクションを効率的に捉えるために,RangeTowerという新しいニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-07-17T08:07:37Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
本稿では,学習からランクへの学習ループに,効率よく解ける公正ランキングモデルを組み込む方法について述べる。
特に,本論文は,OWA目標の制約された最適化を通じてバックプロパゲーションを行う方法を示す最初のものである。
論文 参考訳(メタデータ) (2024-02-07T20:53:53Z) - Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime [59.27851754647913]
予測最適化(英: Predictive optimization)は、エネルギーコストを意識したスケジューリングや広告予算配分など、多くの現実世界のアプリケーションの正確なモデリングである。
我々は,広告のための新しい産業データセットを含む8つの問題に対して,既存のPtO/PnOメソッド11をベンチマークするモジュラーフレームワークを開発した。
本研究は,8ベンチマーク中7ベンチマークにおいて,PnOアプローチがPtOよりも優れていることを示すが,PnOの設計選択に銀の弾丸は見つからない。
論文 参考訳(メタデータ) (2023-11-13T13:19:34Z) - COPR: Consistency-Oriented Pre-Ranking for Online Advertising [27.28920707332434]
オンライン広告のための一貫性指向のプレグレードフレームワークを提案する。
チャンクベースのサンプリングモジュールとプラグアンドプレイのランクアライメントモジュールを使用して、ECPMでランク付けされた結果の一貫性を明示的に最適化する。
Taobaoのディスプレイ広告システムに展開すると、最大で+12.3%のCTRと+5.6%のRPMを実現している。
論文 参考訳(メタデータ) (2023-06-06T09:08:40Z) - PEAR: Personalized Re-ranking with Contextualized Transformer for
Recommendation [48.17295872384401]
文脈変換器に基づくパーソナライズされた再ランクモデル(Dubbed PEAR)を提案する。
PEARは、既存のメソッドに対していくつかの大きな改善を行っている。
また、ランキングリスト全体のユーザの満足度を評価するために、リストレベルの分類タスクでPEARのトレーニングを強化する。
論文 参考訳(メタデータ) (2022-03-23T08:29:46Z) - Learning-To-Ensemble by Contextual Rank Aggregation in E-Commerce [8.067201256886733]
本稿では,アンサンブルモデルを文脈的ランクアグリゲータに置き換えた新しいラーニング・トゥ・エンサンブル・フレームワークRAEGOを提案する。
RA-EGOは当社のオンラインシステムにデプロイされ、収益を大幅に改善しました。
論文 参考訳(メタデータ) (2021-07-19T03:24:06Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Interpretable Learning-to-Rank with Generalized Additive Models [78.42800966500374]
ラーニング・ツー・ランクのモデルの解釈可能性は、非常に重要でありながら、比較的過小評価されている研究分野である。
解釈可能なランキングモデルの最近の進歩は、主に既存のブラックボックスランキングモデルに対するポストホックな説明の生成に焦点を当てている。
一般化加法モデル(GAM)をランキングタスクに導入することにより,本質的に解釈可能な学習 to ランクの基盤を築いた。
論文 参考訳(メタデータ) (2020-05-06T01:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。