論文の概要: Private Online Community Detection for Censored Block Models
- arxiv url: http://arxiv.org/abs/2405.05724v1
- Date: Thu, 9 May 2024 12:35:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 13:32:48.026800
- Title: Private Online Community Detection for Censored Block Models
- Title(参考訳): 検閲ブロックモデルのためのプライベートオンラインコミュニティ検出
- Authors: Mohamed Seif, Liyan Xie, Andrea J. Goldsmith, H. Vincent Poor,
- Abstract要約: 検閲ブロックモデル(CBM)を用いた動的コミュニティにおけるプライベートオンライン変更検出問題について検討する。
ユーザのプライバシーを維持しつつ,コミュニティ構造の変化を識別するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 60.039026645807326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the private online change detection problem for dynamic communities, using a censored block model (CBM). Focusing on the notion of edge differential privacy (DP), we seek to understand the fundamental tradeoffs between the privacy budget, detection delay, and exact community recovery of community labels. We establish the theoretical lower bound on the delay in detecting changes privately and propose an algorithm capable of identifying changes in the community structure, while maintaining user privacy. Further, we provide theoretical guarantees for the effectiveness of our proposed method by showing necessary and sufficient conditions on change detection and exact recovery under edge DP. Simulation and real data examples are provided to validate the proposed method.
- Abstract(参考訳): 本稿では,CBMを用いた動的コミュニティのオンライン変更検出問題について検討する。
エッジディファレンシャルプライバシ(DP)の概念に着目し,プライバシー予算と検出遅延,コミュニティラベルの正確なコミュニティリカバリの基本的なトレードオフを理解することを目指す。
提案手法は,利用者のプライバシーを維持しつつ,コミュニティ構造の変化を識別できるアルゴリズムを提案する。
さらに,提案手法の有効性を理論的に保証し,エッジDPにおける変更検出と正確な回復に必要な条件を提示する。
提案手法を検証するためのシミュレーションと実データ例を提供する。
関連論文リスト
- Decentralized Federated Anomaly Detection in Smart Grids: A P2P Gossip Approach [0.44328715570014865]
本稿では,ランダムウォーク(Random Walk)とエピデミック(Epidemic)という2つの主要なゴシッププロトコルに基づく分散化フェデレーション異常検出手法を提案する。
従来のフェデレートラーニングに比べて,トレーニング時間の35%が顕著に改善されている。
論文 参考訳(メタデータ) (2024-07-20T10:45:06Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
本稿では, 3次圧縮機と多数決機構を組み合わせて, 差分プライバシー, 勾配圧縮, ビザンチンレジリエンスを同時に実現するternaryVoteを提案する。
提案アルゴリズムのF差分プライバシー(DP)とビザンチンレジリエンスのレンズによるプライバシー保証を理論的に定量化する。
論文 参考訳(メタデータ) (2024-02-16T16:41:14Z) - Privacy-Preserving Community Detection for Locally Distributed Multiple
Networks [12.948773068320218]
多層ブロックモデルにおけるコンセンサスコミュニティの検出と推定のための新しい手法を提案する。
分散スペクトルクラスタリング(ppDSC)と呼ばれる新しいアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-06-27T08:36:13Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Private Domain Adaptation from a Public Source [48.83724068578305]
我々は、公開ラベル付きデータを持つソースドメインから、未ラベル付きプライベートデータを持つターゲットドメインへの適応のための差分プライベート離散性に基づくアルゴリズムを設計する。
我々の解は、Frank-WolfeとMirror-Descentアルゴリズムのプライベートな変種に基づいている。
論文 参考訳(メタデータ) (2022-08-12T06:52:55Z) - Data-driven Regularized Inference Privacy [33.71757542373714]
データを衛生化するためのデータ駆動推論プライバシ保護フレームワークを提案する。
我々は変分法に基づく推論プライバシ・フレームワークを開発する。
プライバシー基準を推定するための実証的手法を提案する。
論文 参考訳(メタデータ) (2020-10-10T08:42:59Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
本稿では,差分プライバシー制約下での校正問題の性質を抽象化する枠組みを提案する。
また、新しいリカレーションアルゴリズム、精度温度スケーリングを設計し、プライベートデータセットの事前処理より優れています。
論文 参考訳(メタデータ) (2020-08-21T18:43:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。