論文の概要: Theoretical Guarantees of Data Augmented Last Layer Retraining Methods
- arxiv url: http://arxiv.org/abs/2405.05934v1
- Date: Thu, 9 May 2024 17:16:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 12:43:04.396137
- Title: Theoretical Guarantees of Data Augmented Last Layer Retraining Methods
- Title(参考訳): データ強化ラスト層リトラクション法の理論的保証
- Authors: Monica Welfert, Nathan Stromberg, Lalitha Sankar,
- Abstract要約: 最短グループ精度で最先端の性能を達成するために, 線形最終層再訓練戦略が示されている。
本稿では、潜在表現の分布をモデル化する際の最適最悪のグループ精度を示す。
我々は、合成データセットと大規模公開データセットの両方について、その結果を評価し、検証する。
- 参考スコア(独自算出の注目度): 5.352699766206809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring fair predictions across many distinct subpopulations in the training data can be prohibitive for large models. Recently, simple linear last layer retraining strategies, in combination with data augmentation methods such as upweighting, downsampling and mixup, have been shown to achieve state-of-the-art performance for worst-group accuracy, which quantifies accuracy for the least prevalent subpopulation. For linear last layer retraining and the abovementioned augmentations, we present the optimal worst-group accuracy when modeling the distribution of the latent representations (input to the last layer) as Gaussian for each subpopulation. We evaluate and verify our results for both synthetic and large publicly available datasets.
- Abstract(参考訳): トレーニングデータにおいて、多くの異なるサブ集団にわたる公正な予測を保証することは、大きなモデルでは禁止される。
近年, 重み付け, ダウンサンプリング, ミックスアップなどのデータ拡張手法と組み合わせた単純な線形最終層再学習手法が, 最短群群における精度の定量化に有効であることが示されている。
線形最終層再トレーニングと上記の拡張に対しては,各サブポピュレーションに対して,潜在表現(最後の層への入力)の分布をガウス的としてモデル化する場合に,最適最悪のグループ精度を示す。
我々は、合成データセットと大規模公開データセットの両方について、その結果を評価し、検証する。
関連論文リスト
- DRoP: Distributionally Robust Pruning [11.930434318557156]
我々は、訓練されたモデルの分類バイアスにデータプルーニングが与える影響について、最初の系統的研究を行う。
そこで我々はDRoPを提案する。DRoPは,標準的なコンピュータビジョンベンチマークにおいて,その性能を実証的に実証し,分散的に頑健な手法である。
論文 参考訳(メタデータ) (2024-04-08T14:55:35Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Group Distributionally Robust Dataset Distillation with Risk
Minimization [18.07189444450016]
本稿では,クラスタリングとリスク尺度の最小化を組み合わせ,DDを遂行する損失を最小化するアルゴリズムを提案する。
数値実験により,その有効一般化と部分群間のロバスト性を示す。
論文 参考訳(メタデータ) (2024-02-07T09:03:04Z) - Ranking & Reweighting Improves Group Distributional Robustness [14.021069321266516]
本研究では,DRU(Discounted Rank Upweighting)と呼ばれるランキングベースのトレーニング手法を提案し,テストデータ上で強力なOOD性能を示すモデルを学習する。
いくつかの合成および実世界のデータセットの結果は、群分布シフトに頑健なモデルの選択と学習において、グループレベルの(ソフトミニマックスと異なり)アプローチの優れた能力を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-05-09T20:37:16Z) - Throwing Away Data Improves Worst-Class Error in Imbalanced
Classification [36.91428748713018]
クラス不均衡は分類問題に悪影響を及ぼすが、その治療は理論と実践において異なる。
本稿では,線形分離可能なデータに対する分類器の誤りを記述できる学習理論の開発に挑戦する。
論文 参考訳(メタデータ) (2022-05-23T23:43:18Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
対象データに事前学習されたモデルを微調整することは、多くのディープラーニングアプリケーションで広く利用されている。
近年の研究では、スクラッチからのトレーニングが、この事前トレーニング戦略に比較して、最終的なパフォーマンスを示すことが実証されている。
本稿では,対象タスクの一般化を改善するために,事前学習データからサブセットを選択する新しい選択戦略を提案する。
論文 参考訳(メタデータ) (2021-11-24T06:18:32Z) - Reweighting Augmented Samples by Minimizing the Maximal Expected Loss [51.2791895511333]
我々は,拡張標本の任意の重み付け損失に対する上限となる最大期待損失を構成する。
敵の訓練に触発されて、この最大期待損失を最小化し、単純で解釈可能なクローズドフォームソリューションを得る。
提案手法は, 一般に任意のデータ拡張法上に適用可能である。
論文 参考訳(メタデータ) (2021-03-16T09:31:04Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
本研究では,人口変動に対するモデルのロバスト性を評価する手法を開発した。
既存のデータセットの基盤となるクラス構造を利用して、トレーニングとテストの分散を構成するデータサブポピュレーションを制御する。
この手法をImageNetデータセットに適用し、様々な粒度のサブポピュレーションシフトベンチマークスイートを作成する。
論文 参考訳(メタデータ) (2020-08-11T17:04:47Z) - Improving Maximum Likelihood Training for Text Generation with Density
Ratio Estimation [51.091890311312085]
本稿では,テキスト生成で遭遇する大規模なサンプル空間において,効率よく安定な自動回帰シーケンス生成モデルのトレーニング手法を提案する。
本手法は,品質と多様性の両面で,最大類似度推定や他の最先端シーケンス生成モデルよりも安定に優れている。
論文 参考訳(メタデータ) (2020-07-12T15:31:24Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。