Motion from Measurement: The Role of Symmetry of Quantum Measurements
- URL: http://arxiv.org/abs/2405.05946v1
- Date: Thu, 9 May 2024 17:35:49 GMT
- Title: Motion from Measurement: The Role of Symmetry of Quantum Measurements
- Authors: Luka Antonic, Yariv Kafri, Daniel Podolsky, Ari M. Turner,
- Abstract summary: We consider the dependence on the measurement rate and find that the current is non-monotonic.
Nondegenerate measurements can lead to current loops within the steady state even in the Zeno limit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In quantum mechanics, measurements are dynamical processes and thus they should be capable of inducing currents. The symmetries of the Hamiltonian and measurement operator provide an organizing principle for understanding the conditions for such currents to emerge. The central role is played by the inversion and time-reversal symmetries. We classify the distinct behaviors that emerge from single and repeated measurements, with and without coupling to a dissipative bath. While the breaking of inversion symmetry alone is sufficient to generate currents through measurements, the breaking of time-reversal symmetry by the measurement operator leads to a dramatic increase in the magnitude of the currents. We consider the dependence on the measurement rate and find that the current is non-monotonic. Furthermore, nondegenerate measurements can lead to current loops within the steady state even in the Zeno limit.
Related papers
- Cooperative non-reciprocal emission and quantum sensing of symmetry breaking [4.431087385310259]
Non-reciprocal propagation of energy and information is fundamental to a wide range of quantum technology applications.
We show that interplay between anti-symmetric (symmetric) coherent and symmetric (anti-symmetric) dissipative interactions results in non-reciprocal couplings.
We pave the way for realizing cooperative non-reciprocal transport in qubit ensembles without requiring time-modulated external drives or complex engineering.
arXiv Detail & Related papers (2024-10-18T20:18:11Z) - Measurement-induced entanglement transition in chaotic quantum Ising chain [42.87502453001109]
We study perturbations that break the integrability and/or the symmetry of the model, as well as modifications in the measurement protocol, characterizing the resulting chaos and lack of integrability through the Dissipative Spectral Form Factor (DSFF)
We show that while the measurement-induced phase transition and its properties appear broadly insensitive to lack of integrability and breaking of the $bbZ$ symmetry, a modification of the measurement basis from the transverse to the longitudinal direction makes the phase transition disappear altogether.
arXiv Detail & Related papers (2024-07-11T17:39:29Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Measurement Induced Continuous Time Crystals [0.0]
We show that the magnetization of the thermodynamically large ancilla spins develops limit cycle oscillations.
Our result also demonstrates that a coherent drive is not necessary in order to induce continuous time-translation symmetry breaking.
arXiv Detail & Related papers (2022-06-29T07:24:27Z) - Finite resolution ancilla-assisted measurements of quantum work
distributions [77.34726150561087]
We consider an ancilla-assisted protocol measuring the work done on a quantum system driven by a time-dependent Hamiltonian.
We consider system Hamiltonians which both commute and do not commute at different times, finding corrections to fluctuation relations like the Jarzynski equality and the Crooks relation.
arXiv Detail & Related papers (2021-11-30T15:08:25Z) - Stirring by Staring: Measurement Induced Chirality [0.0]
We show that by utilizing a pattern of repeated occupation measurements we can produce chiral edge transport of fermions hopping on a Lieb lattice.
The procedure is similar in spirit to the use of periodic driving to induce chiral edge transport in Floquet topological insulators.
We study in detail the dependence of the procedure on measurement frequency, showing that in the Zeno limit the system can be described by a classical dynamics, protected transport.
arXiv Detail & Related papers (2021-08-12T18:12:24Z) - Observation of symmetry-protected selection rules in periodically driven
quantum systems [8.674241138986925]
Periodically driven quantum systems, known as Floquet systems, have been a focus of non-equilibrium physics in recent years.
We show how to characterize dynamical symmetries by observing the symmetry-induced selection rules between Floquet states.
Our work shows how to exploit the quantum control toolkit to study dynamical symmetries that can arise in topological phases of strongly-driven Floquet systems.
arXiv Detail & Related papers (2021-05-25T20:45:32Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.