Stability of slow Hamiltonian dynamics from Lieb-Robinson bounds
- URL: http://arxiv.org/abs/2405.05958v2
- Date: Sat, 14 Sep 2024 10:21:00 GMT
- Title: Stability of slow Hamiltonian dynamics from Lieb-Robinson bounds
- Authors: Daniele Toniolo, Sougato Bose,
- Abstract summary: We rigorously show that a local spin system giving rise to a slow Hamiltonian dynamics is stable against generic, even time-dependent, local perturbations.
The stability of the slow dynamics follows from proving that the Lieb-Robinson bound for the dynamics of the total Hamiltonian is the sum of two contributions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We rigorously show that a local spin system giving rise to a slow Hamiltonian dynamics is stable against generic, even time-dependent, local perturbations. The sum of these perturbations can cover a significant amount of the system's size. The stability of the slow dynamics follows from proving that the Lieb-Robinson bound for the dynamics of the total Hamiltonian is the sum of two contributions: the Lieb-Robinson bound of the unperturbed dynamics and an additional term coming from the Lieb-Robinson bound of the perturbations with respect to the unperturbed Hamiltonian. Our results are particularly relevant in the context of the study of the stability of Many-Body-Localized systems, implying that if a so called ergodic region is present in the system, to spread across a certain distance it takes a time proportional to the exponential of such distance. The non-perturbative nature of our result allows us to develop a dual description of the dynamics of a system. As a consequence we are able to prove that the presence of a region of disorder in a ergodic system implies the slowing down of the dynamics in the vicinity of that region.
Related papers
- Stochastic action for the entanglement of a noisy monitored two-qubit
system [55.2480439325792]
We study the effect of local unitary noise on the entanglement evolution of a two-qubit system subject to local monitoring and inter-qubit coupling.
We construct a Hamiltonian by incorporating the noise into the Chantasri-Dressel-Jordan path integral and use it to identify the optimal entanglement dynamics.
Numerical investigation of long-time steady-state entanglement reveals a non-monotonic relationship between concurrence and noise strength.
arXiv Detail & Related papers (2024-03-13T11:14:10Z) - Slow dynamics of a mobile impurity interacting with an Anderson
insulator [0.0]
We investigate dynamics of a single mobile impurity immersed in a bath of Anderson localized particles.
Considering longer time scales, we show that the impurity spreads sub-diffusively and induces a gradual delocalization of the Anderson insulator.
arXiv Detail & Related papers (2022-12-14T08:57:13Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Prethermalization in periodically-driven nonreciprocal many-body spin
systems [0.0]
We analyze a new class of time-periodic nonreciprocal dynamics in interacting chaotic classical spin systems.
We find that the magnetization dynamics features a long-lived metastable plateau, whose duration is controlled by the fourth power of the drive frequency.
We extend the notion of prethermal dynamics, observed in the high-frequency limit of periodically-driven systems, to nonreciprocal systems.
arXiv Detail & Related papers (2022-08-18T18:00:15Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Classifying the non-time-local and entangling dynamics of an open qubit
system [0.0]
We study families of dynamical maps generated from interactions with varying degrees of symmetry.
For a family of time-independent Hamiltonians, we demonstrate the relationship between symmetry, strong-coupling, perfect entanglers, non-Markovian features, and non-time-locality.
arXiv Detail & Related papers (2022-01-18T16:02:05Z) - Nonergodic dynamics of the one-dimensional Bose-Hubbard model with a
trapping potential [0.0]
We investigate nonergodic behavior of the one-dimensional Bose-Hubbard model.
We compute the level spacing statistic, the time evolution of the number imbalance between the odd and the even sites, and the entanglement entropy.
arXiv Detail & Related papers (2021-08-03T01:37:42Z) - Engineered dissipation induced entanglement transition in quantum spin
chains: from logarithmic growth to area law [0.0]
Recent theoretical work has shown that the competition between coherent unitary dynamics and measurements can give rise to transitions in the entanglement scaling.
We consider an engineered dissipation, which stabilizes an entangled phase of a quantum spin$-1/2$ chain.
We find that the system undergoes an entanglement transition from a logarithmic growth to an area law when the competition ratio between the unitary evolution and the non-unitary dynamics increases.
arXiv Detail & Related papers (2021-06-18T12:41:01Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.