Self-Supervised Learning of Time Series Representation via Diffusion Process and Imputation-Interpolation-Forecasting Mask
- URL: http://arxiv.org/abs/2405.05959v2
- Date: Mon, 17 Jun 2024 08:54:51 GMT
- Title: Self-Supervised Learning of Time Series Representation via Diffusion Process and Imputation-Interpolation-Forecasting Mask
- Authors: Zineb Senane, Lele Cao, Valentin Leonhard Buchner, Yusuke Tashiro, Lei You, Pawel Herman, Mats Nordahl, Ruibo Tu, Vilhelm von Ehrenheim,
- Abstract summary: Time Series Diffusion Embedding (TSDE) is first diffusion-based SSL TSRL approach.
It segments TS data into observed and masked parts using an Imputation-Interpolation-Forecasting (IIF) mask.
It applies a trainable embedding function, featuring dual-orthogonal Transformer encoders with a crossover mechanism.
- Score: 6.579109660479191
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Time Series Representation Learning (TSRL) focuses on generating informative representations for various Time Series (TS) modeling tasks. Traditional Self-Supervised Learning (SSL) methods in TSRL fall into four main categories: reconstructive, adversarial, contrastive, and predictive, each with a common challenge of sensitivity to noise and intricate data nuances. Recently, diffusion-based methods have shown advanced generative capabilities. However, they primarily target specific application scenarios like imputation and forecasting, leaving a gap in leveraging diffusion models for generic TSRL. Our work, Time Series Diffusion Embedding (TSDE), bridges this gap as the first diffusion-based SSL TSRL approach. TSDE segments TS data into observed and masked parts using an Imputation-Interpolation-Forecasting (IIF) mask. It applies a trainable embedding function, featuring dual-orthogonal Transformer encoders with a crossover mechanism, to the observed part. We train a reverse diffusion process conditioned on the embeddings, designed to predict noise added to the masked part. Extensive experiments demonstrate TSDE's superiority in imputation, interpolation, forecasting, anomaly detection, classification, and clustering. We also conduct an ablation study, present embedding visualizations, and compare inference speed, further substantiating TSDE's efficiency and validity in learning representations of TS data.
Related papers
- Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior.
We revisit SR from a novel information-theoretic perspective and find that sequential modeling methods fail to adequately capture randomness and unpredictability of user behavior.
Inspired by fuzzy information processing theory, this paper introduces the fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests.
arXiv Detail & Related papers (2024-10-31T14:52:01Z) - Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think [72.48325960659822]
One main bottleneck in training large-scale diffusion models for generation lies in effectively learning these representations.
We study this by introducing a straightforward regularization called REPresentation Alignment (REPA), which aligns the projections of noisy input hidden states in denoising networks with clean image representations obtained from external, pretrained visual encoders.
The results are striking: our simple strategy yields significant improvements in both training efficiency and generation quality when applied to popular diffusion and flow-based transformers, such as DiTs and SiTs.
arXiv Detail & Related papers (2024-10-09T14:34:53Z) - Robust Multivariate Time Series Forecasting against Intra- and Inter-Series Transitional Shift [40.734564394464556]
We present a unified Probabilistic Graphical Model to Jointly capturing intra-/inter-series correlations and modeling the time-variant transitional distribution.
We validate the effectiveness and efficiency of JointPGM through extensive experiments on six highly non-stationary MTS datasets.
arXiv Detail & Related papers (2024-07-18T06:16:03Z) - Diffusion-TS: Interpretable Diffusion for General Time Series Generation [6.639630994040322]
Diffusion-TS is a novel diffusion-based framework that generates time series samples of high quality.
We train the model to directly reconstruct the sample instead of the noise in each diffusion step, combining a Fourier-based loss term.
Results show that Diffusion-TS achieves the state-of-the-art results on various realistic analyses of time series.
arXiv Detail & Related papers (2024-03-04T05:39:23Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Adversarial Training of Denoising Diffusion Model Using Dual
Discriminators for High-Fidelity Multi-Speaker TTS [0.0]
The diffusion model is capable of generating high-quality data through a probabilistic approach.
It suffers from the drawback of slow generation speed due to the requirement of a large number of time steps.
We propose a speech synthesis model with two discriminators: a diffusion discriminator for learning the distribution of the reverse process and a spectrogram discriminator for learning the distribution of the generated data.
arXiv Detail & Related papers (2023-08-03T07:22:04Z) - Crossway Diffusion: Improving Diffusion-based Visuomotor Policy via
Self-supervised Learning [42.009856923352864]
diffusion models have been adopted for behavioral cloning in a sequence modeling fashion.
We propose Crossway Diffusion, a simple yet effective method to enhance diffusion-based visuomotor policy learning.
Our experiments demonstrate the effectiveness of Crossway Diffusion in various simulated and real-world robot tasks.
arXiv Detail & Related papers (2023-07-04T17:59:29Z) - An Efficient Membership Inference Attack for the Diffusion Model by
Proximal Initialization [58.88327181933151]
In this paper, we propose an efficient query-based membership inference attack (MIA)
Experimental results indicate that the proposed method can achieve competitive performance with only two queries on both discrete-time and continuous-time diffusion models.
To the best of our knowledge, this work is the first to study the robustness of diffusion models to MIA in the text-to-speech task.
arXiv Detail & Related papers (2023-05-26T16:38:48Z) - DDS2M: Self-Supervised Denoising Diffusion Spatio-Spectral Model for
Hyperspectral Image Restoration [103.79030498369319]
Self-supervised diffusion model for hyperspectral image restoration is proposed.
textttDDS2M enjoys stronger ability to generalization compared to existing diffusion-based methods.
Experiments on HSI denoising, noisy HSI completion and super-resolution on a variety of HSIs demonstrate textttDDS2M's superiority over the existing task-specific state-of-the-arts.
arXiv Detail & Related papers (2023-03-12T14:57:04Z) - DiffPhase: Generative Diffusion-based STFT Phase Retrieval [15.16865739526702]
Diffusion probabilistic models have been recently used in a variety of tasks, including speech enhancement and synthesis.
In this work we build upon previous work in the speech domain, adapting a speech enhancement diffusion model specifically for phase retrieval.
Evaluation using speech quality and intelligibility metrics shows the diffusion approach is well-suited to the phase retrieval task, with performance surpassing both classical and modern methods.
arXiv Detail & Related papers (2022-11-08T15:50:35Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.