論文の概要: Quantum-Inspired Genetic Algorithm for Designing Planar Multilayer Photonic Structure
- arxiv url: http://arxiv.org/abs/2405.05982v1
- Date: Wed, 8 May 2024 03:03:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 17:45:54.527681
- Title: Quantum-Inspired Genetic Algorithm for Designing Planar Multilayer Photonic Structure
- Title(参考訳): 平面多層フォトニック構造設計のための量子インスピレーション型遺伝的アルゴリズム
- Authors: Zhihao Xu, Wenjie Shang, Seongmin Kim, Alexandria Bobbitt, Eungkyu Lee, Tengfei Luo,
- Abstract要約: 量子アルゴリズムは、機能性材料の設計における新しいツールである。
量子コンピューティングリソースの高価格と成長するコンピューティングニーズのバランスをとる方法は、解決すべき緊急の問題となっている。
改良された量子遺伝的アルゴリズム(QGA)と機械学習サロゲートモデル回帰を組み合わせた能動的学習方式に基づく新しい最適化手法を提案する。
- 参考スコア(独自算出の注目度): 40.27913742030096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum algorithms are emerging tools in the design of functional materials due to their powerful solution space search capability. How to balance the high price of quantum computing resources and the growing computing needs has become an urgent problem to be solved. We propose a novel optimization strategy based on an active learning scheme that combines the improved Quantum Genetic Algorithm (QGA) with machine learning surrogate model regression. Using Random Forests as the surrogate model circumvents the time-consuming physical modeling or experiments, thereby improving the optimization efficiency. QGA, a genetic algorithm embedded with quantum mechanics, combines the advantages of quantum computing and genetic algorithms, enabling faster and more robust convergence to the optimum. Using the design of planar multilayer photonic structures for transparent radiative cooling as a testbed, we show superiority of our algorithm over the classical genetic algorithm (CGA). Additionally, we show the precision advantage of the RF model as a flexible surrogate model, which relaxes the constraints on the type of surrogate model that can be used in other quantum computing optimization algorithms (e.g., quantum annealing needs Ising model as a surrogate).
- Abstract(参考訳): 量子アルゴリズムは、その強力な解空間探索能力のため、機能性材料の設計において新たなツールである。
量子コンピューティングリソースの高価格と成長するコンピューティングニーズのバランスをとる方法は、解決すべき緊急の問題となっている。
改良された量子遺伝的アルゴリズム(QGA)と機械学習サロゲートモデル回帰を組み合わせた能動的学習方式に基づく新しい最適化手法を提案する。
ランダムフォレストを代理モデルとして使用することで、時間を要する物理モデリングや実験を回避し、最適化効率を向上させる。
量子力学に埋め込まれた遺伝的アルゴリズムであるQGAは、量子コンピューティングと遺伝的アルゴリズムの利点を組み合わせて、最適化へのより高速でより堅牢な収束を可能にする。
透過的放射冷却のための平面多層フォトニック構造をテストベッドとして設計し,古典的遺伝的アルゴリズム(CGA)よりもアルゴリズムの方が優れていることを示す。
さらに、他の量子コンピューティング最適化アルゴリズム(例えば、量子アニーリングをサロゲートとして必要とするIsingモデル)で使用可能なサロゲートモデルの型に対する制約を緩和するフレキシブルサロゲートモデルとして、RFモデルの精度上の利点を示す。
関連論文リスト
- Performant near-term quantum combinatorial optimization [0.0]
線形深度回路を用いた最適化問題に対する変分量子アルゴリズムを提案する。
我々のアルゴリズムは、ターゲット関数の各項を制御するために設計されたハミルトン生成器からなるアンサッツを使用する。
論文 参考訳(メタデータ) (2024-04-24T18:49:07Z) - Quantum Graph Optimization Algorithm [7.788671046805509]
本研究では,メッセージパス機構を統合した新しい変分量子グラフ最適化アルゴリズムを提案する。
QUBOタスクのスケーラビリティに関して,本アルゴリズムはQAOAよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-09T16:25:07Z) - Graph Learning for Parameter Prediction of Quantum Approximate
Optimization Algorithm [14.554010382366302]
量子近似最適化(Quantum Approximate Optimization, QAOA)は、Max-Cutの問題を効率的に解く可能性において際立っている。
我々は,GNNをウォームスタート手法として,グラフニューラルネットワーク(GNN)を用いてQAOAを最適化する。
以上の結果から,量子コンピューティングにおけるGNNのQAOA性能向上の可能性が示唆され,量子古典的ハイブリッドコンピューティングへの新たな道が開かれた。
論文 参考訳(メタデータ) (2024-03-05T20:23:25Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
最適化問題に対する量子インフォームド再帰最適化(QIRO)アルゴリズムのファミリを提案し,実装する。
提案手法は、量子資源を利用して、問題固有の古典的還元ステップで使用される情報を得る。
バックトラック技術を用いて、量子ハードウェアの要求を増大させることなく、アルゴリズムの性能をさらに向上させる。
論文 参考訳(メタデータ) (2023-08-25T18:02:06Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Variational quantum algorithm for unconstrained black box binary
optimization: Application to feature selection [1.9182522142368683]
制約のないブラックボックス二項問題の解法として,変分量子アルゴリズムを提案する。
これは最適化のための量子アルゴリズムの典型的な設定とは対照的である。
提案手法は,従来の特徴選択手法よりも競争力があり,性能も向上していることを示す。
論文 参考訳(メタデータ) (2022-05-06T07:02:15Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。