Precision Rehabilitation for Patients Post-Stroke based on Electronic Health Records and Machine Learning
- URL: http://arxiv.org/abs/2405.05993v1
- Date: Thu, 9 May 2024 04:06:44 GMT
- Title: Precision Rehabilitation for Patients Post-Stroke based on Electronic Health Records and Machine Learning
- Authors: Fengyi Gao, Xingyu Zhang, Sonish Sivarajkumar, Parker Denny, Bayan Aldhahwani, Shyam Visweswaran, Ryan Shi, William Hogan, Allyn Bove, Yanshan Wang,
- Abstract summary: We collected data for 265 stroke patients from the University of Pittsburgh Medical Center.
To identify impactful exercises, we used Chi-square tests, Fisher's exact tests, and logistic regression for odds ratios.
We identified three rehabilitation exercises that significantly contributed to patient post-stroke functional ability improvement.
- Score: 3.972100195623647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we utilized statistical analysis and machine learning methods to examine whether rehabilitation exercises can improve patients post-stroke functional abilities, as well as forecast the improvement in functional abilities. Our dataset is patients' rehabilitation exercises and demographic information recorded in the unstructured electronic health records (EHRs) data and free-text rehabilitation procedure notes. We collected data for 265 stroke patients from the University of Pittsburgh Medical Center. We employed a pre-existing natural language processing (NLP) algorithm to extract data on rehabilitation exercises and developed a rule-based NLP algorithm to extract Activity Measure for Post-Acute Care (AM-PAC) scores, covering basic mobility (BM) and applied cognitive (AC) domains, from procedure notes. Changes in AM-PAC scores were classified based on the minimal clinically important difference (MCID), and significance was assessed using Friedman and Wilcoxon tests. To identify impactful exercises, we used Chi-square tests, Fisher's exact tests, and logistic regression for odds ratios. Additionally, we developed five machine learning models-logistic regression (LR), Adaboost (ADB), support vector machine (SVM), gradient boosting (GB), and random forest (RF)-to predict outcomes in functional ability. Statistical analyses revealed significant associations between functional improvements and specific exercises. The RF model achieved the best performance in predicting functional outcomes. In this study, we identified three rehabilitation exercises that significantly contributed to patient post-stroke functional ability improvement in the first two months. Additionally, the successful application of a machine learning model to predict patient-specific functional outcomes underscores the potential for precision rehabilitation.
Related papers
- Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - D-STGCNT: A Dense Spatio-Temporal Graph Conv-GRU Network based on
transformer for assessment of patient physical rehabilitation [0.3626013617212666]
This paper introduces a new graph-based model for assessing rehabilitation exercises.
Dense connections and GRU mechanisms are used to rapidly process large 3D skeleton inputs.
The evaluation of our proposed approach on the KIMORE and UI-PRMD datasets highlighted its potential.
arXiv Detail & Related papers (2023-12-21T00:38:31Z) - Nonparametric Additive Value Functions: Interpretable Reinforcement
Learning with an Application to Surgical Recovery [8.890206493793878]
We propose a nonparametric additive model for estimating interpretable value functions in reinforcement learning.
We validate the proposed approach with a simulation study, and, in an application to spine disease, uncover recovery recommendations that are inline with related clinical knowledge.
arXiv Detail & Related papers (2023-08-25T02:05:51Z) - Machine Learning Techniques for Predicting the Short-Term Outcome of
Resective Surgery in Lesional-Drug Resistance Epilepsy [1.759008116536278]
Seven dif-ferent categorization algorithms were used to analyze the data.
The support vector machine (SVM) with the linear kernel yielded 76.1% in terms of accuracy.
arXiv Detail & Related papers (2023-02-10T13:04:47Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
Strategy training is a rehabilitation approach that teaches skills to reduce disability among those with cognitive impairments following a stroke.
Standardized fidelity assessment is used to measure adherence to treatment principles.
We developed a rule-based NLP algorithm, a long-short term memory (LSTM) model, and a bidirectional encoder representation from transformers (BERT) model for this task.
arXiv Detail & Related papers (2022-09-14T15:33:30Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Towards data-driven stroke rehabilitation via wearable sensors and deep
learning [13.839058010830971]
In preclinical models of stroke, high doses of rehabilitation training are required to restore functional movement to the affected limbs of animals.
In humans, however, the necessary dose of training to potentiate recovery is not known.
Here, to develop a measurement approach, we took the critical first step of automatically identifying functional primitives.
arXiv Detail & Related papers (2020-04-14T18:05:44Z) - A Review of Computational Approaches for Evaluation of Rehabilitation
Exercises [58.720142291102135]
This paper reviews computational approaches for evaluating patient performance in rehabilitation programs using motion capture systems.
The reviewed computational methods for exercise evaluation are grouped into three main categories: discrete movement score, rule-based, and template-based approaches.
arXiv Detail & Related papers (2020-02-29T22:18:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.