論文の概要: BB-Patch: BlackBox Adversarial Patch-Attack using Zeroth-Order Optimization
- arxiv url: http://arxiv.org/abs/2405.06049v1
- Date: Thu, 9 May 2024 18:42:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 17:26:24.703802
- Title: BB-Patch: BlackBox Adversarial Patch-Attack using Zeroth-Order Optimization
- Title(参考訳): BBパッチ:ゼロ階最適化を用いたブラックボックス対応パッチアタック
- Authors: Satyadwyoom Kumar, Saurabh Gupta, Arun Balaji Buduru,
- Abstract要約: 敵の攻撃戦略は、敵が訓練データ、モデルパラメータ、配置中の入力にアクセスすることを前提としている。
入力画像のどこにでも適用可能な敵パッチを生成するブラックボックスの敵攻撃戦略を提案する。
- 参考スコア(独自算出の注目度): 10.769992215544358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning has become popular due to its vast applications in almost all domains. However, models trained using deep learning are prone to failure for adversarial samples and carry a considerable risk in sensitive applications. Most of these adversarial attack strategies assume that the adversary has access to the training data, the model parameters, and the input during deployment, hence, focus on perturbing the pixel level information present in the input image. Adversarial Patches were introduced to the community which helped in bringing out the vulnerability of deep learning models in a much more pragmatic manner but here the attacker has a white-box access to the model parameters. Recently, there has been an attempt to develop these adversarial attacks using black-box techniques. However, certain assumptions such as availability large training data is not valid for a real-life scenarios. In a real-life scenario, the attacker can only assume the type of model architecture used from a select list of state-of-the-art architectures while having access to only a subset of input dataset. Hence, we propose an black-box adversarial attack strategy that produces adversarial patches which can be applied anywhere in the input image to perform an adversarial attack.
- Abstract(参考訳): ディープラーニングは、ほとんどすべてのドメインで広く使われているため、人気を集めている。
しかし、ディープラーニングを用いて訓練されたモデルは、敵のサンプルに失敗する傾向があり、センシティブなアプリケーションでかなりのリスクを負う。
これらの敵攻撃戦略の多くは、敵が訓練データ、モデルパラメータ、配置中の入力にアクセスでき、したがって、入力画像に存在するピクセルレベルの情報を摂動することに集中していると仮定する。
Adversarial Patchesがコミュニティに導入され、ディープラーニングモデルの脆弱性をより現実的な方法で実現するのに役立ったが、ここでは攻撃者がモデルパラメータにホワイトボックスでアクセスできる。
近年,ブラックボックス技術を用いた敵攻撃の開発が試みられている。
しかし、大規模なトレーニングデータの可用性のような特定の仮定は、現実のシナリオでは有効ではない。
実際のシナリオでは、攻撃者は入力データセットのサブセットのみにアクセスしながら、選択された最先端アーキテクチャのリストから使用するモデルアーキテクチャのタイプしか想定できない。
そこで我々は,入力画像のどこにでも適用可能な敵パッチを生成するブラックボックスの敵攻撃戦略を提案する。
関連論文リスト
- A Review of Adversarial Attacks in Computer Vision [16.619382559756087]
敵対的攻撃は人間の目では見えないが、深層学習の誤分類につながる可能性がある。
敵攻撃は、攻撃者がモデルのパラメータと勾配を知っているホワイトボックス攻撃とブラックボックス攻撃に分けられ、後者は攻撃者がモデルの入力と出力しか取得できない。
論文 参考訳(メタデータ) (2023-08-15T09:43:10Z) - Query Efficient Cross-Dataset Transferable Black-Box Attack on Action
Recognition [99.29804193431823]
ブラックボックスの敵攻撃は、行動認識システムに現実的な脅威をもたらす。
本稿では,摂動を発生させることにより,これらの欠点に対処する新たな行動認識攻撃を提案する。
提案手法は,最先端のクエリベースおよび転送ベース攻撃と比較して,8%,12%の偽装率を達成する。
論文 参考訳(メタデータ) (2022-11-23T17:47:49Z) - Art-Attack: Black-Box Adversarial Attack via Evolutionary Art [5.760976250387322]
ディープニューラルネットワーク(DNN)は多くのタスクで最先端のパフォーマンスを達成したが、敵の例によって生成された攻撃に対して極端な脆弱性を示している。
本稿では, 進化芸術の概念を用いて, 敵対的事例を生成することによって, 勾配のない攻撃を提案する。
論文 参考訳(メタデータ) (2022-03-07T12:54:09Z) - RamBoAttack: A Robust Query Efficient Deep Neural Network Decision
Exploit [9.93052896330371]
本研究では,局所的な最小値の侵入を回避し,ノイズ勾配からのミスダイレクトを回避できる,堅牢なクエリ効率の高い攻撃法を開発した。
RamBoAttackは、敵クラスとターゲットクラスで利用可能な異なるサンプルインプットに対して、より堅牢である。
論文 参考訳(メタデータ) (2021-12-10T01:25:24Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
本稿では,知識盗むプロセスで使用されるデータの分散設計に焦点をあてた,新しい視点代替トレーニングを提案する。
これら2つのモジュールの組み合わせにより、代替モデルとターゲットモデルの一貫性がさらに向上し、敵攻撃の有効性が大幅に向上する。
論文 参考訳(メタデータ) (2021-04-26T07:26:29Z) - Improving Query Efficiency of Black-box Adversarial Attack [75.71530208862319]
ニューラルプロセスに基づくブラックボックス対逆攻撃(NP-Attack)を提案する。
NP-Attackはブラックボックス設定でクエリ数を大幅に削減できる。
論文 参考訳(メタデータ) (2020-09-24T06:22:56Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z) - Bias-based Universal Adversarial Patch Attack for Automatic Check-out [59.355948824578434]
逆の例は、ディープニューラルネットワーク(DNN)を簡単に誤解させる、知覚不能な摂動を持つ入力である。
既存の戦略は強力な一般化能力を持つ敵パッチを生成できなかった。
本稿では,強い一般化能力を持つクラス非依存の普遍的敵パッチを生成するためのバイアスベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-19T07:38:54Z) - Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data [96.92837098305898]
Black-box攻撃は、機械学習モデルのインプット・アウトプットペアをクエリすることで、敵の摂動を発生させることを目的としている。
ブラックボックス攻撃はしばしば、入力空間の高次元性のためにクエリ非効率性の問題に悩まされる。
本研究では,低次元部分空間における逆摂動を,補助的なラベルのないデータセットに分散させることで抑制するスパンニング攻撃と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2020-05-11T05:57:15Z) - Data-Free Adversarial Perturbations for Practical Black-Box Attack [25.44755251319056]
本研究では, 学習データ分布の知識を必要とせずに, 対象モデルを騙し, 対向的摂動を創り出すためのデータフリー手法を提案する。
提案手法は,攻撃者が訓練データにアクセスできない場合でも,現在のディープラーニングモデルが依然として危険であることを実証的に示す。
論文 参考訳(メタデータ) (2020-03-03T02:22:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。