Selective Fine-tuning on LLM-labeled Data May Reduce Reliance on Human Annotation: A Case Study Using Schedule-of-Event Table Detection
- URL: http://arxiv.org/abs/2405.06093v2
- Date: Mon, 5 Aug 2024 15:51:50 GMT
- Title: Selective Fine-tuning on LLM-labeled Data May Reduce Reliance on Human Annotation: A Case Study Using Schedule-of-Event Table Detection
- Authors: Bhawesh Kumar, Jonathan Amar, Eric Yang, Nan Li, Yugang Jia,
- Abstract summary: We fine-tune PaLM-2 with parameter efficient fine-tuning (PEFT) using noisy labels obtained from gemini-pro 1.0.
We show that fine-tuned PaLM-2 with those labels achieves performance that exceeds the gemini-pro 1.0 and other LLMs.
- Score: 2.238930812771604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated their efficacy across a broad spectrum of tasks in healthcare applications. However, often LLMs need to be fine-tuned on task-specific expert annotated data to achieve optimal performance, which can be expensive and time consuming. In this study, we fine-tune PaLM-2 with parameter efficient fine-tuning (PEFT) using noisy labels obtained from gemini-pro 1.0 for the detection of Schedule-of-Event (SoE) tables, which specify care plan in clinical trial protocols. We introduce a filtering mechanism to select high-confidence labels for this table classification task, thereby reducing the noise in the auto-generated labels. We show that fine-tuned PaLM-2 with those labels achieves performance that exceeds the gemini-pro 1.0 and other LLMs. Furthermore, its performance is close to a PaLM-2 fine-tuned on labels obtained from non-expert annotators. Our results show that leveraging LLM-generated labels through powerful models like gemini-pro can potentially serve as a viable strategy for improving LLM performance through fine-tuning in specialized tasks, particularly in domains where expert annotations are scarce, expensive, or time-consuming to obtain.
Related papers
- Are LLMs Better than Reported? Detecting Label Errors and Mitigating Their Effect on Model Performance [21.926934384262594]
Large language models (LLMs) offer new opportunities to enhance the annotation process.
We compare expert, crowd-sourced, and our LLM-based annotations in terms of agreement, label quality, and efficiency.
Our findings reveal a substantial number of label errors, which, when corrected, induce a significant upward shift in reported model performance.
arXiv Detail & Related papers (2024-10-24T16:27:03Z) - Large language models enabled multiagent ensemble method for efficient EHR data labeling [9.481473827205159]
This study introduces a novel multiagent ensemble method powered by LLMs to address a key challenge in ML - data labeling.
By using the ensemble LLMs and natural language processing, we labeled MIMIC-IV ECG dataset of 623,566 ECG reports with an estimated accuracy of 98.2%.
We applied the ensemble LLMs method to identify SDOH from social history sections of 1,405 EHR clinical notes, also achieving competitive performance.
arXiv Detail & Related papers (2024-10-21T22:12:00Z) - Learning to Predict Usage Options of Product Reviews with LLM-Generated Labels [14.006486214852444]
We propose a method of using LLMs as few-shot learners for annotating data in a complex natural language task.
Learning a custom model offers individual control over energy efficiency and privacy measures.
We find that the quality of the resulting data exceeds the level attained by third-party vendor services.
arXiv Detail & Related papers (2024-10-16T11:34:33Z) - On Unsupervised Prompt Learning for Classification with Black-box Language Models [71.60563181678323]
Large language models (LLMs) have achieved impressive success in text-formatted learning problems.
LLMs can label datasets with even better quality than skilled human annotators.
In this paper, we propose unsupervised prompt learning for classification with black-box LLMs.
arXiv Detail & Related papers (2024-10-04T03:39:28Z) - Zero-to-Strong Generalization: Eliciting Strong Capabilities of Large Language Models Iteratively without Gold Labels [75.77877889764073]
Large Language Models (LLMs) have demonstrated remarkable performance through supervised fine-tuning or in-context learning using gold labels.
This study explores whether solely utilizing unlabeled data can elicit strong model capabilities.
We propose a new paradigm termed zero-to-strong generalization.
arXiv Detail & Related papers (2024-09-19T02:59:44Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - SLPT: Selective Labeling Meets Prompt Tuning on Label-Limited Lesion
Segmentation [57.37875162629063]
We propose a framework that combines selective labeling with prompt tuning to boost performance in limited labels.
We evaluate our method on liver tumor segmentation and achieve state-of-the-art performance, outperforming traditional fine-tuning with only 6% of tunable parameters.
arXiv Detail & Related papers (2023-08-09T12:22:49Z) - Ground Truth Inference for Weakly Supervised Entity Matching [76.6732856489872]
We propose a simple but powerful labeling model for weak supervision tasks.
We then tailor the labeling model specifically to the task of entity matching.
We show that our labeling model results in a 9% higher F1 score on average than the best existing method.
arXiv Detail & Related papers (2022-11-13T17:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.