論文の概要: Can Perplexity Reflect Large Language Model's Ability in Long Text Understanding?
- arxiv url: http://arxiv.org/abs/2405.06105v1
- Date: Thu, 9 May 2024 21:15:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 17:16:40.231265
- Title: Can Perplexity Reflect Large Language Model's Ability in Long Text Understanding?
- Title(参考訳): パープレキシティは長文理解における大規模言語モデルの能力を反映できるか?
- Authors: Yutong Hu, Quzhe Huang, Mingxu Tao, Chen Zhang, Yansong Feng,
- Abstract要約: 多くの研究で、LLM(Large Language Models)は極めて長いテキストを処理する可能性があることが示されている。
本研究では, PPL と LLM の長文理解能力には相関関係がないことを明らかにした。
- 参考スコア(独自算出の注目度): 32.414056028346465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have shown that Large Language Models (LLMs) have the potential to process extremely long text. Many works only evaluate LLMs' long-text processing ability on the language modeling task, with perplexity (PPL) as the evaluation metric. However, in our study, we find that there is no correlation between PPL and LLMs' long-text understanding ability. Besides, PPL may only reflect the model's ability to model local information instead of catching long-range dependency. Therefore, only using PPL to prove the model could process long text is inappropriate. The local focus feature of PPL could also explain some existing phenomena, such as the great extrapolation ability of the position method ALiBi. When evaluating a model's ability in long text, we might pay more attention to PPL's limitation and avoid overly relying on it.
- Abstract(参考訳): 近年の研究では、Large Language Models (LLM) が極めて長いテキストを処理する可能性があることが示されている。
多くの研究は、言語モデリングタスクにおいてLLMの長文処理能力のみを評価し、パープレキシティ(PPL)を評価指標として評価している。
しかし,本研究では,PPLとLLMの長文理解能力には相関がみられなかった。
さらに、PPLは、長距離依存をキャッチする代わりに、ローカル情報をモデル化するモデルの能力を反映しているだけである。
したがって、モデルが長いテキストを処理できることを証明するのにPPLを使うだけでは不適切である。
PPLの局所的な焦点特徴は、位置法ALiBiの大きな外挿能力など、既存の現象についても説明できる。
長いテキストでモデルの能力を評価する際には、PPLの制限にもっと注意を払って、過度に依存しないようにします。
関連論文リスト
- What is Wrong with Perplexity for Long-context Language Modeling? [71.34933096461124]
長いコンテキスト入力は、会話の拡張、文書の要約、多数のショットインコンテキスト学習といったタスクにおいて、大きな言語モデル(LLM)にとって不可欠である。
パープレキシティ(PPL)は、長期コンテキスト能力の評価には信頼性が低いことが証明されている。
長短コンテキストコントラスト法を用いて鍵トークンを識別する手法であるbfLongPPLを提案する。
論文 参考訳(メタデータ) (2024-10-31T09:39:28Z) - Multilingual Needle in a Haystack: Investigating Long-Context Behavior of Multilingual Large Language Models [22.859955360764275]
本稿では,MultiLingual Needle-in-a-Haystack(MLNeedle)テストを導入する。
我々はMLNeedleの4つの最先端の大規模言語モデルを評価する。
論文 参考訳(メタデータ) (2024-08-19T17:02:06Z) - Ada-LEval: Evaluating long-context LLMs with length-adaptable benchmarks [76.43527940649939]
大規模言語モデル(LLM)の長文理解を評価するベンチマークであるAda-LEvalを紹介する。
Ada-LEvalにはTSortとBestAnswerという2つの挑戦的なサブセットが含まれている。
Ada-LEvalを用いた4つの最先端クローズドソースAPIモデルと6つのオープンソースモデルを評価した。
論文 参考訳(メタデータ) (2024-04-09T17:30:48Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - Proto-lm: A Prototypical Network-Based Framework for Built-in
Interpretability in Large Language Models [27.841725567976315]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野を著しく進歩させてきたが、その解釈可能性の欠如が大きな関心事となっている。
本稿では,LLMが即座に解釈可能な埋め込みを学習できるネットワークベースのホワイトボックスフレームワークであるproto-lmを紹介する。
提案手法の適用性と解釈性は,幅広いNLPタスクの実験を通じて実証され,性能を犠牲にすることなく解釈可能なモデルを作成する新たな可能性を示す。
論文 参考訳(メタデータ) (2023-11-03T05:55:32Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Black-box language model explanation by context length probing [7.526153863886609]
本稿では、因果言語モデルのための新しい説明手法である文脈長探索について述べる。
この技術はモデルに依存しず、トークンレベルの確率の計算以上のモデル内部へのアクセスに依存しない。
事前学習された大規模言語モデルに文脈長探索を適用し、初期分析と洞察を提供する。
論文 参考訳(メタデータ) (2022-12-30T16:24:10Z) - Prompt-Augmented Linear Probing: Scaling beyond the Limit of Few-shot
In-Context Learners [25.262774179224945]
本稿では,線形探索とインコンテクスト学習のハイブリッドであるPALP(Properced-augmented linear probing)を提案する。
PALPは、データハングリーシナリオにおけるICL間のギャップを閉じる入力表現と、トレーニングオーバーヘッドの少ないデータバウンダントシナリオにおける微調整を大幅に強化する。
論文 参考訳(メタデータ) (2022-12-21T09:37:05Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。