論文の概要: MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection
- arxiv url: http://arxiv.org/abs/2405.06198v1
- Date: Fri, 10 May 2024 02:26:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 16:57:10.578215
- Title: MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection
- Title(参考訳): MAPL:半教師付き異常検出のためのメモリ拡張と擬似ラベル化
- Authors: Junzhuo Chen,
- Abstract要約: メモリ拡張(Memory Augmentation)と擬似ラベル(Pseudo-Labeling, MAPL)と呼ばれる, 産業環境における表面欠陥検出のための新しいメソドロジーを導入する。
この手法は、まず異常シミュレーション戦略を導入し、希少または未知の異常型を認識するモデルの能力を著しく改善する。
入力データから直接異常領域を識別するために、MAPLによってエンドツーエンドの学習フレームワークが使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large unlabeled data and difficult-to-identify anomalies are the urgent issues need to overcome in most industrial scene. In order to address this issue, a new meth-odology for detecting surface defects in in-dustrial settings is introduced, referred to as Memory Augmentation and Pseudo-Labeling(MAPL). The methodology first in-troduces an anomaly simulation strategy, which significantly improves the model's ability to recognize rare or unknown anom-aly types by generating simulated anomaly samples. To cope with the problem of the lack of labeling of anomalous simulated samples, a pseudo-labeler method based on a one-classifier ensemble was employed in this study, which enhances the robustness of the model in the case of limited labeling data by automatically selecting key pseudo-labeling hyperparameters. Meanwhile, a memory-enhanced learning mechanism is introduced to effectively predict abnormal regions by analyzing the difference be-tween the input samples and the normal samples in the memory pool. An end-to-end learning framework is employed by MAPL to identify the abnormal regions directly from the input data, which optimizes the ef-ficiency and real-time performance of de-tection. By conducting extensive trials on the recently developed BHAD dataset (in-cluding MVTec AD [1], Visa [2], and MDPP [3]), MAPL achieves an average im-age-level AUROC score of 86.2%, demon-strating a 5.1% enhancement compared to the original MemSeg [4] model. The source code is available at https://github.com/jzc777/MAPL.
- Abstract(参考訳): 大規模なラベル付きデータと識別の難しい異常は、ほとんどの産業現場で緊急に克服する必要がある問題である。
この問題に対処するために、メモリ拡張(Memory Augmentation and Pseudo-Labeling, MAPL)と呼ばれる、土木環境における表面欠陥を検出する新しいメソドロジーを導入する。
この手法が最初に導入されるのは異常シミュレーション戦略であり、シミュレーションされた異常サンプルを生成することにより、稀または未知の異常型を認識できるモデルの能力を大幅に向上する。
模擬サンプルのラベル付けの欠如に対処するため, 1分類アンサンブルに基づく擬似ラベル法を用い, 鍵擬似ラベル化ハイパーパラメータを自動的に選択することにより, 限定ラベルデータの場合のモデルのロバスト性を向上する。
一方、メモリプール内の入力サンプルと正常サンプルとの差を解析することにより、異常領域を効果的に予測するメモリ強化学習機構を導入する。
エンド・ツー・エンドの学習フレームワークはMAPLによって入力データから直接異常領域を識別するために使用され、デテクションの効率とリアルタイム性能を最適化する。
最近開発されたBHADデータセット(MVTec AD [1], Visa [2], MDPP [3] を含む)の広範囲な試行により、MAPL は、オリジナルの MemSeg [4] モデルと比較して平均既成の AUROC スコア 86.2% を達成する。
ソースコードはhttps://github.com/jzc777/MAPLで公開されている。
関連論文リスト
- Prototype based Masked Audio Model for Self-Supervised Learning of Sound Event Detection [22.892382672888488]
半教師付きアルゴリズムはラベルのないデータから学ぶためにラベル付きデータに依存する。
SEDにおける自己教師型表現学習のためのプロトタイプベースMasked Audio Model(PMAM)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-26T09:07:20Z) - Appearance Blur-driven AutoEncoder and Motion-guided Memory Module for Video Anomaly Detection [14.315287192621662]
ビデオ異常検出(VAD)は、しばしば正常なサンプルの分布を学習し、重要な偏差を測定することによって異常を検出する。
ほとんどのVADは、新しいターゲットドメインに対するデータセット間の検証には対応できない。
ゼロショットによるクロスデータセット検証を実現するため,動作誘導型メモリモジュールを用いた新しいVAD手法を提案する。
論文 参考訳(メタデータ) (2024-09-26T07:48:20Z) - AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models [19.36513465638031]
AnomalyLLMは、いくつかのラベル付きサンプルの情報を統合して、数発の異常検出を実現する、コンテキスト内学習フレームワークである。
4つのデータセットの実験により、AnomalyLLMは、数発の異常検出のパフォーマンスを著しく改善できるだけでなく、モデルパラメータを更新することなく、新しい異常に対して優れた結果を得ることができることが明らかになった。
論文 参考訳(メタデータ) (2024-05-13T10:37:50Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
教師なし異常検出(UAD)は多くの研究の関心を集め、幅広い応用を推進している。
不明瞭だが強力な統計モデルである正規化フローは、教師なしの方法で異常検出と局所化に適している。
非対称な並列フローと融合フローからなるMSFlowと呼ばれる新しいマルチスケールフローベースフレームワークを提案する。
我々のMSFlowは、検出AUORCスコアが99.7%、ローカライゼーションAUCROCスコアが98.8%、プロスコアが97.1%の新たな最先端技術を実現している。
論文 参考訳(メタデータ) (2023-08-29T13:38:35Z) - LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection [12.596635603629725]
我々は,通常のデータのみにアクセス可能な場合に,複数のクラスに属するオブジェクトから異常を検出する統一モデルを開発した。
まず、生成的アプローチについて検討し、再構成のための潜伏拡散モデルについて検討する。
「拡散モデルの入力特徴空間を修正し、アイデンティティショートカットをさらに緩和する特徴編集戦略を導入する。」
論文 参考訳(メタデータ) (2023-07-16T14:41:22Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z) - Memory Augmented Generative Adversarial Networks for Anomaly Detection [12.341523221155708]
メモリAugmented Generative Adrial Networks (MEMGAN) は、エンコーディングと生成の両方のためにメモリモジュールと相互作用する。
我々のアルゴリズムは、ほとんどのテキストエンコードされた正規データは、メモリユニットの凸内にあるが、異常データは外部から分離されている。
MEMGANのデコードメモリユニットは、従来の方法よりも解釈可能であり、また、メモリメカニズムの有効性を示す。
論文 参考訳(メタデータ) (2020-02-07T08:46:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。