論文の概要: Appearance Blur-driven AutoEncoder and Motion-guided Memory Module for Video Anomaly Detection
- arxiv url: http://arxiv.org/abs/2409.17608v1
- Date: Thu, 26 Sep 2024 07:48:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 22:36:10.312673
- Title: Appearance Blur-driven AutoEncoder and Motion-guided Memory Module for Video Anomaly Detection
- Title(参考訳): 映像異常検出のための出現ブラア駆動オートエンコーダと動作誘導メモリモジュール
- Authors: Jiahao Lyu, Minghua Zhao, Jing Hu, Xuewen Huang, Shuangli Du, Cheng Shi, Zhiyong Lv,
- Abstract要約: ビデオ異常検出(VAD)は、しばしば正常なサンプルの分布を学習し、重要な偏差を測定することによって異常を検出する。
ほとんどのVADは、新しいターゲットドメインに対するデータセット間の検証には対応できない。
ゼロショットによるクロスデータセット検証を実現するため,動作誘導型メモリモジュールを用いた新しいVAD手法を提案する。
- 参考スコア(独自算出の注目度): 14.315287192621662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video anomaly detection (VAD) often learns the distribution of normal samples and detects the anomaly through measuring significant deviations, but the undesired generalization may reconstruct a few anomalies thus suppressing the deviations. Meanwhile, most VADs cannot cope with cross-dataset validation for new target domains, and few-shot methods must laboriously rely on model-tuning from the target domain to complete domain adaptation. To address these problems, we propose a novel VAD method with a motion-guided memory module to achieve cross-dataset validation with zero-shot. First, we add Gaussian blur to the raw appearance images, thereby constructing the global pseudo-anomaly, which serves as the input to the network. Then, we propose multi-scale residual channel attention to deblur the pseudo-anomaly in normal samples. Next, memory items are obtained by recording the motion features in the training phase, which are used to retrieve the motion features from the raw information in the testing phase. Lastly, our method can ignore the blurred real anomaly through attention and rely on motion memory items to increase the normality gap between normal and abnormal motion. Extensive experiments on three benchmark datasets demonstrate the effectiveness of the proposed method. Compared with cross-domain methods, our method achieves competitive performance without adaptation during testing.
- Abstract(参考訳): ビデオ異常検出(VAD)は、しばしば通常のサンプルの分布を学習し、重要な偏差を測定することによって異常を検出するが、望ましくない一般化はいくつかの異常を再構築し、偏差を抑制する。
一方、ほとんどのVADは、新しいターゲットドメインに対するデータセット間の検証には対応できません。
これらの問題に対処するため、ゼロショットによるクロスデータセット検証を実現するために、モーションガイドメモリモジュールを用いた新しいVAD法を提案する。
まず、生画像にガウスのぼかしを加え、ネットワークへの入力として機能するグローバル擬似アノマリーを構築する。
そこで本研究では, 正常試料の擬似異常を抑えるため, マルチスケール残留チャネルアテンションを提案する。
次に、試験相の原情報から動作特徴を検索するために使用されるトレーニング相の動作特徴を記録して記憶項目を得る。
最後に,本手法は注意を通してぼやけた実際の異常を無視し,正常な動作と異常な動作との正常性ギャップを増大させるため,動作記憶項目に依存する。
3つのベンチマークデータセットに対する大規模な実験により,提案手法の有効性が示された。
クロスドメイン手法と比較して,本手法はテスト中の適応を伴わない競争性能を実現する。
関連論文リスト
- MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection [0.0]
メモリ拡張(Memory Augmentation)と擬似ラベル(Pseudo-Labeling, MAPL)と呼ばれる, 産業環境における表面欠陥検出のための新しいメソドロジーを導入する。
この手法は、まず異常シミュレーション戦略を導入し、希少または未知の異常型を認識するモデルの能力を著しく改善する。
入力データから直接異常領域を識別するために、MAPLによってエンドツーエンドの学習フレームワークが使用される。
論文 参考訳(メタデータ) (2024-05-10T02:26:35Z) - Continuous Memory Representation for Anomaly Detection [24.58611060347548]
CRADは「連続的」メモリ内の正常な特徴を表現するための新しい異常検出手法である。
MVTec ADデータセットを用いた評価では、CRADは、マルチクラス統一異常検出におけるエラーの65.0%を削減し、従来の最先端手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2024-02-28T12:38:44Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
既存のカスタマイズ方法は、事前訓練された拡散確率モデルをユーザが提供する概念に合わせるために、複数の参照例にアクセスする必要がある。
本論文は、DPMカスタマイズの課題として、生成コンテンツ上で定義された差別化可能な指標が唯一利用可能な監督基準である場合に解決することを目的とする。
本稿では,拡散モデルから新しいサンプルを初めて生成するAdjointDPMを提案する。
次に、随伴感度法を用いて、損失の勾配をモデルのパラメータにバックプロパゲートする。
論文 参考訳(メタデータ) (2023-07-20T09:06:21Z) - Unsupervised Video Anomaly Detection with Diffusion Models Conditioned
on Compact Motion Representations [17.816344808780965]
教師なしビデオ異常検出(VAD)問題とは、ビデオ内の各フレームをラベルにアクセスすることなく正常または異常に分類することである。
提案手法は条件付き拡散モデルを用いて,事前学習したネットワークから入力データを抽出する。
提案手法は,データ駆動しきい値を用いて,異常事象の指標として高い再構成誤差を考慮している。
論文 参考訳(メタデータ) (2023-07-04T07:36:48Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - A Video Anomaly Detection Framework based on Appearance-Motion Semantics
Representation Consistency [18.06814233420315]
本稿では,正常データの外観と動作意味表現の整合性を利用して異常検出を行うフレームワークを提案する。
通常のサンプルの外観および動作情報表現を符号化する2ストリームエンコーダを設計する。
異常サンプルの外観と運動特性の低い一貫性は、より大きな再構成誤差で予測されたフレームを生成するために使用できる。
論文 参考訳(メタデータ) (2022-04-08T15:59:57Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
本稿では,ビデオ監視における異常検出問題に対処する。
異常事象の固有な規則性と不均一性のため、問題は正規性モデリング戦略と見なされる。
我々のモデルは、トレーニング中に異常なサンプルを見ることなく、オブジェクト中心の正規パターンを学習する。
論文 参考訳(メタデータ) (2022-03-07T19:28:39Z) - Learning Memory-guided Normality for Anomaly Detection [33.77435699029528]
本稿では,異常検出に対する教師なし学習手法を提案する。
また,メモリをトレーニングするための特徴量と分離性損失を新たに提示し,メモリアイテムの識別能力と通常のデータからの深い学習能力を高める。
論文 参考訳(メタデータ) (2020-03-30T05:30:09Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。