論文の概要: A First Step in Using Machine Learning Methods to Enhance Interaction Analysis for Embodied Learning Environments
- arxiv url: http://arxiv.org/abs/2405.06203v1
- Date: Fri, 10 May 2024 02:40:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 16:57:10.571624
- Title: A First Step in Using Machine Learning Methods to Enhance Interaction Analysis for Embodied Learning Environments
- Title(参考訳): 実地学習環境におけるインタラクション分析の強化を目的とした機械学習手法の第一段階
- Authors: Joyce Fonteles, Eduardo Davalos, Ashwin T. S., Yike Zhang, Mengxi Zhou, Efrat Ayalon, Alicia Lane, Selena Steinberg, Gabriella Anton, Joshua Danish, Noel Enyedy, Gautam Biswas,
- Abstract要約: 本研究は,機械学習とマルチモーダル学習分析を用いて,研究者のタスクを簡略化することを目的とする。
本研究は,学生の状態,行動,視線,感情,運動をタイムライン上で視覚的に表現できる可能性を決定するための最初のケーススタディである。
このタイムラインにより,マルチモーダル・インタラクション分析によって同定された臨界学習モーメントのアライメントを調べることができる。
- 参考スコア(独自算出の注目度): 4.349901731099916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Investigating children's embodied learning in mixed-reality environments, where they collaboratively simulate scientific processes, requires analyzing complex multimodal data to interpret their learning and coordination behaviors. Learning scientists have developed Interaction Analysis (IA) methodologies for analyzing such data, but this requires researchers to watch hours of videos to extract and interpret students' learning patterns. Our study aims to simplify researchers' tasks, using Machine Learning and Multimodal Learning Analytics to support the IA processes. Our study combines machine learning algorithms and multimodal analyses to support and streamline researcher efforts in developing a comprehensive understanding of students' scientific engagement through their movements, gaze, and affective responses in a simulated scenario. To facilitate an effective researcher-AI partnership, we present an initial case study to determine the feasibility of visually representing students' states, actions, gaze, affect, and movement on a timeline. Our case study focuses on a specific science scenario where students learn about photosynthesis. The timeline allows us to investigate the alignment of critical learning moments identified by multimodal and interaction analysis, and uncover insights into students' temporal learning progressions.
- Abstract(参考訳): 複合現実環境における子どもの具体的学習を調査し、科学過程を協調的にシミュレートするためには、学習と協調行動を理解するために複雑なマルチモーダルデータを分析する必要がある。
学習科学者は、そのようなデータを分析するためのインタラクション分析(IA)手法を開発したが、学生の学習パターンを抽出し解釈するためには、何時間ものビデオを見る必要がある。
本研究の目的は,機械学習とマルチモーダル学習分析を用いてIAプロセスを支援することにある。
本研究は、機械学習アルゴリズムとマルチモーダル分析を組み合わせて、学生の行動、視線、情緒的反応をシミュレートしたシナリオで包括的に理解する研究を支援する。
研究者とAIの効果的な連携を促進するために,学生の状況,行動,視線,感情,動きをタイムライン上で視覚的に表現できる可能性を決定するための最初のケーススタディを提案する。
本研究は, 学生が光合成を学ぶ, 特定の科学シナリオに焦点を当てた事例である。
このタイムラインでは,マルチモーダルおよびインタラクション分析によって同定された臨界学習モーメントのアライメントを調査し,時間的学習の進行に関する洞察を明らかにすることができる。
関連論文リスト
- Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - RIGL: A Unified Reciprocal Approach for Tracing the Independent and Group Learning Processes [22.379764500005503]
個人レベルとグループレベルの両方で知識状態をトレースする統合相互モデルであるRIGLを提案する。
本稿では,学生と集団の相互作用を同時にモデル化するための時間フレーム対応の相互埋め込みモジュールを提案する。
動的グラフモデリングと時間的自己注意機構を組み合わせた関係誘導型時間的注意ネットワークを設計する。
論文 参考訳(メタデータ) (2024-06-18T10:16:18Z) - Harnessing Transparent Learning Analytics for Individualized Support
through Auto-detection of Engagement in Face-to-Face Collaborative Learning [3.0184625301151833]
本稿では,共同作業における学生の個人参加を自動的に検出する透過的アプローチを提案する。
提案手法は,学生の個人的関与を反映し,異なる協調学習課題を持つ生徒を識別する指標として利用することができる。
論文 参考訳(メタデータ) (2024-01-03T12:20:28Z) - Predicting the long-term collective behaviour of fish pairs with deep learning [52.83927369492564]
本研究では,魚種Hemigrammus rhodostomusの社会的相互作用を評価するための深層学習モデルを提案する。
我々は、ディープラーニングのアプローチの結果と実験結果と、最先端の分析モデルの結果を比較した。
機械学習モデルにより、ソーシャルインタラクションは、微妙な実験的観測可能な解析的相互作用と直接競合できることを実証する。
論文 参考訳(メタデータ) (2023-02-14T05:25:03Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
様々なソースからのデータを組み込んだマルチモーダル機械学習が,ますます普及している研究分野となっている。
我々は、視覚、音声、テキスト、動きなど、各データフォーマットの共通点と特異点を分析する。
本稿では,表現学習と下流アプリケーションレベルの両方から,マルチモーダル学習に関する既存の文献を考察する。
論文 参考訳(メタデータ) (2022-10-05T13:14:57Z) - A Deep Learning Approach to Analyzing Continuous-Time Systems [20.89961728689037]
深層学習が複雑なプロセスの解析に有効であることを示す。
提案手法は,多くの自然系に対して不可解な標準的な仮定を緩和する。
行動・神経画像データに顕著な改善が認められた。
論文 参考訳(メタデータ) (2022-09-25T03:02:31Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
本研究では,ウェアラブル型行動認識タスクにおけるコントラスト学習について検討する。
本稿では,PyTorchライブラリのtextttCL-HAR について述べる。
論文 参考訳(メタデータ) (2022-02-12T06:10:15Z) - Sharing to learn and learning to share; Fitting together Meta-Learning, Multi-Task Learning, and Transfer Learning: A meta review [4.462334751640166]
本稿では、これらの学習アルゴリズムを2つ組み合わせた研究についてレビューする。
文献から蓄積した知識に基づいて、汎用的なタスクに依存しないモデルに依存しない学習ネットワークを仮定する。
論文 参考訳(メタデータ) (2021-11-23T20:41:06Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。