論文の概要: RIGL: A Unified Reciprocal Approach for Tracing the Independent and Group Learning Processes
- arxiv url: http://arxiv.org/abs/2406.12465v1
- Date: Tue, 18 Jun 2024 10:16:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 19:27:22.551361
- Title: RIGL: A Unified Reciprocal Approach for Tracing the Independent and Group Learning Processes
- Title(参考訳): RIGL:独立学習プロセスとグループ学習プロセスの追跡のための統一的相互アプローチ
- Authors: Xiaoshan Yu, Chuan Qin, Dazhong Shen, Shangshang Yang, Haiping Ma, Hengshu Zhu, Xingyi Zhang,
- Abstract要約: 個人レベルとグループレベルの両方で知識状態をトレースする統合相互モデルであるRIGLを提案する。
本稿では,学生と集団の相互作用を同時にモデル化するための時間フレーム対応の相互埋め込みモジュールを提案する。
動的グラフモデリングと時間的自己注意機構を組み合わせた関係誘導型時間的注意ネットワークを設計する。
- 参考スコア(独自算出の注目度): 22.379764500005503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of education, both independent learning and group learning are esteemed as the most classic paradigms. The former allows learners to self-direct their studies, while the latter is typically characterized by teacher-directed scenarios. Recent studies in the field of intelligent education have leveraged deep temporal models to trace the learning process, capturing the dynamics of students' knowledge states, and have achieved remarkable performance. However, existing approaches have primarily focused on modeling the independent learning process, with the group learning paradigm receiving less attention. Moreover, the reciprocal effect between the two learning processes, especially their combined potential to foster holistic student development, remains inadequately explored. To this end, in this paper, we propose RIGL, a unified Reciprocal model to trace knowledge states at both the individual and group levels, drawing from the Independent and Group Learning processes. Specifically, we first introduce a time frame-aware reciprocal embedding module to concurrently model both student and group response interactions across various time frames. Subsequently, we employ reciprocal enhanced learning modeling to fully exploit the comprehensive and complementary information between the two behaviors. Furthermore, we design a relation-guided temporal attentive network, comprised of dynamic graph modeling coupled with a temporal self-attention mechanism. It is used to delve into the dynamic influence of individual and group interactions throughout the learning processes. Conclusively, we introduce a bias-aware contrastive learning module to bolster the stability of the model's training. Extensive experiments on four real-world educational datasets clearly demonstrate the effectiveness of the proposed RIGL model.
- Abstract(参考訳): 教育の領域では、独立した学習とグループ学習の両方が最も古典的なパラダイムとして評価されている。
前者は学習者の自己指導を許し、後者は教師が指揮するシナリオによって特徴づけられる。
知的教育分野における最近の研究は、深層時間モデルを利用して学習過程を辿り、学生の知識状態のダイナミクスを捉え、卓越した成果を上げている。
しかし、既存のアプローチは主に独立した学習プロセスのモデリングに重点を置いており、グループ学習パラダイムはあまり注目されていない。
さらに、この2つの学習過程の相互効果、特に総合的な学生発達を促進するための組み合わせの可能性は、いまだに不十分である。
そこで本稿では,独立学習とグループ学習のプロセスから,個人レベルとグループレベルの両方の知識状態をトレースする統合相互モデルであるRIGLを提案する。
具体的には、まず、時間フレームを意識した相互埋め込みモジュールを導入し、学生とグループの両方の応答相互作用を、様々な時間フレームで同時にモデル化する。
その後,両行動間の包括的・補完的な情報を完全に活用するために,相互強化学習モデリングを採用する。
さらに、動的グラフモデリングと時間的自己注意機構を組み合わせた関係誘導型時間的注意ネットワークを設計する。
学習プロセス全体を通して個人とグループ間の相互作用の動的影響を掘り下げるために用いられる。
包括的に、モデルのトレーニングの安定性を高めるために、バイアス対応のコントラスト学習モジュールを導入する。
4つの実世界の教育データセットに対する大規模な実験により,提案したRIGLモデルの有効性が明らかに示された。
関連論文リスト
- Heterogeneous Contrastive Learning for Foundation Models and Beyond [73.74745053250619]
ビッグデータと人工知能の時代において、新しいパラダイムは、大規模な異種データをモデル化するために、対照的な自己教師付き学習を活用することである。
本調査は基礎モデルの異種コントラスト学習の現況を批判的に評価する。
論文 参考訳(メタデータ) (2024-03-30T02:55:49Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Predicting the long-term collective behaviour of fish pairs with deep learning [52.83927369492564]
本研究では,魚種Hemigrammus rhodostomusの社会的相互作用を評価するための深層学習モデルを提案する。
我々は、ディープラーニングのアプローチの結果と実験結果と、最先端の分析モデルの結果を比較した。
機械学習モデルにより、ソーシャルインタラクションは、微妙な実験的観測可能な解析的相互作用と直接競合できることを実証する。
論文 参考訳(メタデータ) (2023-02-14T05:25:03Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
NERモデルの堅牢性を改善するために,自己学習型教員学生フレームワークを提案する。
本稿では,2つの教員ネットワークからなる適応型教員学習を提案する。
微粒な学生アンサンブルは、教師モデルの各フラグメントを、生徒の対応するフラグメントの時間移動平均で更新し、各モデルフラグメントのノイズに対する一貫した予測を強化する。
論文 参考訳(メタデータ) (2022-12-13T12:14:09Z) - Mitigating Biases in Student Performance Prediction via Attention-Based
Personalized Federated Learning [7.040747348755578]
従来の学習に基づく学生モデリングのアプローチは、データの可用性のバイアスにより、表現不足の学生グループにあまり一般化しない。
本研究では,オンライン学習活動から学生のパフォーマンスを予測する手法を提案し,人種や性別などの異なる集団を対象とした推論精度を最適化する。
論文 参考訳(メタデータ) (2022-08-02T00:22:20Z) - Ex-Model: Continual Learning from a Stream of Trained Models [12.27992745065497]
連続的な学習システムは、訓練されたモデルの形式で圧縮された情報の可用性を活用するべきであると論じる。
エージェントが生データの代わりに以前に訓練されたモデルのシーケンスから学習する「Ex-Model Continual Learning」(Ex-Model Continual Learning)という新しいパラダイムを導入し、形式化する。
論文 参考訳(メタデータ) (2021-12-13T09:46:16Z) - Mixture-of-Variational-Experts for Continual Learning [0.0]
学習と忘れのトレードオフを促進する最適原理を提案する。
我々はMixture-of-Variational-Experts (MoVE)と呼ばれる連続学習のためのニューラルネットワーク層を提案する。
MNISTおよびCIFAR10データセットの変種に関する実験は、MoVE層の競合性能を示す。
論文 参考訳(メタデータ) (2021-10-25T06:32:06Z) - Relaxed Clustered Hawkes Process for Procrastination Modeling in MOOCs [1.6822770693792826]
有意義な学生行動クラスタを発見する新しいパーソナライズホークスプロセスモデル(RCHawkes-Gamma)を提案する。
本研究は,rchawkes-gammaが学生群を効果的に回復できることを示す。
論文 参考訳(メタデータ) (2021-01-29T22:20:38Z) - Learning Temporal Dynamics from Cycles in Narrated Video [85.89096034281694]
時が経つにつれて世界がどのように変化するかをモデル化する学習問題に対する自己監督型ソリューションを提案します。
私たちのモデルは、前方および後方の時間を予測するためにモダリティに依存しない関数を学習します。
将来的な動作の予測や画像の時間的順序付けなど,様々なタスクに対して,学習されたダイナミクスモデルを適用する。
論文 参考訳(メタデータ) (2021-01-07T02:41:32Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
本稿では,情報とアーキテクチャの制約を,確率論的モデリング文献のアイデアと組み合わせて行動の事前学習を行う方法について考察する。
このような潜伏変数の定式化が階層的強化学習(HRL)と相互情報と好奇心に基づく目的との関係について論じる。
シミュレーションされた連続制御領域に適用することで,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-10-27T13:17:18Z) - Collaborative Group Learning [42.31194030839819]
協調学習は、小規模学生ネットワークのプールをロバストなローカルミニマへと導くために、知識伝達をうまく応用してきた。
従来のアプローチでは、学生の数が増加すると、学生の均質化が大幅に増加するのが普通だった。
特徴表現の多様化と効果的な正規化の実現を目的とした,効率的なフレームワークである協調型グループ学習を提案する。
論文 参考訳(メタデータ) (2020-09-16T14:34:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。