論文の概要: MGFI-Net: A Multi-Grained Feature Integration Network for Enhanced Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2502.13808v1
- Date: Wed, 19 Feb 2025 15:24:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:59:07.916275
- Title: MGFI-Net: A Multi-Grained Feature Integration Network for Enhanced Medical Image Segmentation
- Title(参考訳): MGFI-Net: 医用画像セグメンテーションのための多機能統合ネットワーク
- Authors: Yucheng Zeng,
- Abstract要約: 医用画像のセグメンテーションにおける大きな課題は、ノイズ、低コントラスト、複雑な解剖学的構造の存在に対する関心領域の正確な記述を実現することである。
既存のセグメンテーションモデルは、多粒度情報の統合を無視し、エッジの詳細を保存できないことが多い。
我々は,Multi-Grained Feature Integration Network (MGFI-Net)と呼ばれる新しい画像セマンティックセマンティクスモデルを提案する。
私たちのMGFI-Netは、これらの問題に対処するための2つの専用のモジュールで設計されています。
- 参考スコア(独自算出の注目度): 0.3108011671896571
- License:
- Abstract: Medical image segmentation plays a crucial role in various clinical applications. A major challenge in medical image segmentation is achieving accurate delineation of regions of interest in the presence of noise, low contrast, or complex anatomical structures. Existing segmentation models often neglect the integration of multi-grained information and fail to preserve edge details, which are critical for precise segmentation. To address these challenges, we propose a novel image semantic segmentation model called the Multi-Grained Feature Integration Network (MGFI-Net). Our MGFI-Net is designed with two dedicated modules to tackle these issues. First, to enhance segmentation accuracy, we introduce a Multi-Grained Feature Extraction Module, which leverages hierarchical relationships between different feature scales to selectively focus on the most relevant information. Second, to preserve edge details, we incorporate an Edge Enhancement Module that effectively retains and integrates boundary information to refine segmentation results. Extensive experiments demonstrate that MGFI-Net not only outperforms state-of-the-art methods in terms of segmentation accuracy but also achieves superior time efficiency, establishing it as a leading solution for real-time medical image segmentation.
- Abstract(参考訳): 医療画像のセグメンテーションは様々な臨床応用において重要な役割を担っている。
医用画像のセグメンテーションにおける大きな課題は、ノイズ、低コントラスト、複雑な解剖学的構造の存在に対する関心領域の正確な記述を実現することである。
既存のセグメンテーションモデルは、しばしば多粒度情報の統合を無視し、正確なセグメンテーションにとって重要なエッジの詳細を保存するのに失敗する。
これらの課題に対処するために,Multi-Grained Feature Integration Network (MGFI-Net) と呼ばれる新しい画像セマンティックセマンティック・セマンティック・モデルを提案する。
私たちのMGFI-Netは、これらの問題に対処するための2つの専用のモジュールで設計されています。
まず、セグメント化精度を高めるために、異なる特徴スケール間の階層的関係を利用して、最も関連性の高い情報に選択的にフォーカスする多階層特徴抽出モジュールを導入する。
第二に、エッジの詳細を保存するために、境界情報を効果的に保持し統合し、セグメンテーション結果を洗練するエッジ拡張モジュールを組み込む。
MGFI-Netはセグメント化精度において最先端の手法より優れるだけでなく、より優れた時間効率を実現し、リアルタイムな医用画像セグメンテーションの先駆的なソリューションとして確立している。
関連論文リスト
- MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
MedCLIP-SAMv2はCLIPとSAMモデルを統合して臨床スキャンのセグメンテーションを行う新しいフレームワークである。
提案手法は,DHN-NCE(Decoupled Hard Negative Noise Contrastive Estimation)によるBiomedCLIPモデルの微調整を含む。
また,ゼロショットセグメンテーションラベルを弱教師付きパラダイム内で使用することにより,セグメンテーション品質をさらに向上する。
論文 参考訳(メタデータ) (2024-09-28T23:10:37Z) - Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation [49.5901368256326]
医用画像のセグメンテーションにおけるセグメンテーションモデル(DAPSAM)の微調整のための新しいドメイン適応型プロンプトフレームワークを提案する。
DAPSAMは,2つの医療画像分割タスクにおいて,異なるモダリティで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-09-19T07:28:33Z) - Modality-agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention [1.1155836879100416]
医用画像セグメンテーションのためのModality-Agnostic Domain Generalizable Network (MADGNet)を提案する。
MFMSAブロックは空間的特徴抽出の過程を洗練させる。
E-SDMは、深い監督を伴うマルチタスク学習における情報損失を軽減する。
論文 参考訳(メタデータ) (2024-05-10T07:34:36Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
本稿では,CLIPモデルとSAMモデルを組み合わせて臨床スキャンのセグメンテーションを生成する新しいフレームワーク MedCLIP-SAM を提案する。
3つの多様なセグメンテーションタスクと医用画像モダリティを広範囲にテストすることにより、提案手法は優れた精度を示した。
論文 参考訳(メタデータ) (2024-03-29T15:59:11Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
低解像度医用画像から様々な大きさの病変を適応的に分割する,スケールアウェアな超解像ネットワークを提案する。
提案するネットワークは,他の最先端手法と比較して一貫した改善を実現した。
論文 参考訳(メタデータ) (2023-05-30T14:25:55Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - w-Net: Dual Supervised Medical Image Segmentation Model with
Multi-Dimensional Attention and Cascade Multi-Scale Convolution [47.56835064059436]
医療画像中の小物体の正確なセグメンテーションを予測するために, カスケード型マルチスケール畳み込みを用いた多次元アテンションセグメンテーションモデルを提案する。
提案手法は, KiTS19, Decathlon-10 の Pancreas CT, MICCAI 2018 LiTS Challenge の3つのデータセットを用いて評価した。
論文 参考訳(メタデータ) (2020-11-15T13:54:22Z) - Boundary-aware Context Neural Network for Medical Image Segmentation [15.585851505721433]
医用画像のセグメンテーションは、さらなる臨床分析と疾患診断のための信頼性の高い基盤を提供することができる。
既存のCNNベースのほとんどの手法は、正確なオブジェクト境界のない不満足なセグメンテーションマスクを生成する。
本稿では,2次元医用画像分割のための境界認識コンテキストニューラルネットワーク(BA-Net)を定式化する。
論文 参考訳(メタデータ) (2020-05-03T02:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。