Multi-Target Radar Search and Track Using Sequence-Capable Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2502.13584v1
- Date: Wed, 19 Feb 2025 09:55:38 GMT
- Title: Multi-Target Radar Search and Track Using Sequence-Capable Deep Reinforcement Learning
- Authors: Jan-Hendrik Ewers, David Cormack, Joe Gibbs, David Anderson,
- Abstract summary: The research addresses sensor task management for radar systems.
It focuses on efficiently searching and tracking multiple targets using reinforcement learning.
The key contribution lies in demonstrating how reinforcement learning can optimize sensor management.
- Score: 0.26999000177990923
- License:
- Abstract: The research addresses sensor task management for radar systems, focusing on efficiently searching and tracking multiple targets using reinforcement learning. The approach develops a 3D simulation environment with an active electronically scanned array radar, using a multi-target tracking algorithm to improve observation data quality. Three neural network architectures were compared including an approach using fated recurrent units with multi-headed self-attention. Two pre-training techniques were applied: behavior cloning to approximate a random search strategy and an auto-encoder to pre-train the feature extractor. Experimental results revealed that search performance was relatively consistent across most methods. The real challenge emerged in simultaneously searching and tracking targets. The multi-headed self-attention architecture demonstrated the most promising results, highlighting the potential of sequence-capable architectures in handling dynamic tracking scenarios. The key contribution lies in demonstrating how reinforcement learning can optimize sensor management, potentially improving radar systems' ability to identify and track multiple targets in complex environments.
Related papers
- A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Tracking aims to autonomously follow a target object by controlling the motion system based on visual observations.
We propose a unified cross-scene cross-domain benchmark for open-world drone active tracking called DAT.
We also propose a reinforcement learning-based drone tracking method called R-VAT.
arXiv Detail & Related papers (2024-12-01T09:37:46Z) - Deep Learning-Based Robust Multi-Object Tracking via Fusion of mmWave Radar and Camera Sensors [6.166992288822812]
Multi-Object Tracking plays a critical role in ensuring safer and more efficient navigation through complex traffic scenarios.
This paper presents a novel deep learning-based method that integrates radar and camera data to enhance the accuracy and robustness of Multi-Object Tracking in autonomous driving systems.
arXiv Detail & Related papers (2024-07-10T21:09:09Z) - Multi-Object Tracking based on Imaging Radar 3D Object Detection [0.13499500088995461]
This paper presents an approach for tracking surrounding traffic participants with a classical tracking algorithm.
Learning based object detectors have been shown to work adequately on lidar and camera data, while learning based object detectors using standard radar data input have proven to be inferior.
With the improvements to radar sensor technology in the form of imaging radars, the object detection performance on radar was greatly improved but is still limited compared to lidar sensors due to the sparsity of the radar point cloud.
The tracking algorithm must overcome the limited detection quality while generating consistent tracks.
arXiv Detail & Related papers (2024-06-03T05:46:23Z) - Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data [55.70071704247794]
Integrated sensing and communications (ISAC) is pivotal for 6G communications and is boosted by the rapid development of reconfigurable intelligent surfaces (RISs)
This paper proposes the X2Track framework, where we model the tracking function by a hierarchical architecture, jointly utilizing multi-modal CSI indicators across multiple bands, and optimize it in a cross-domain manner.
Under X2Track, we design an efficient deep learning algorithm to minimize tracking errors, based on transformer neural networks and adversarial learning techniques.
arXiv Detail & Related papers (2024-05-10T08:04:27Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
Multiple object tracking is a critical task in autonomous driving.
As tracking accuracy improves, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency.
In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy.
arXiv Detail & Related papers (2024-03-23T04:18:49Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Identifying Coordination in a Cognitive Radar Network -- A
Multi-Objective Inverse Reinforcement Learning Approach [30.65529797672378]
This paper provides a novel multi-objective inverse reinforcement learning approach for detecting coordination among radars.
It also applies to more general problems of inverse detection and learning of multi-objective optimizing systems.
arXiv Detail & Related papers (2022-11-13T17:27:39Z) - Correlation-Aware Deep Tracking [83.51092789908677]
We propose a novel target-dependent feature network inspired by the self-/cross-attention scheme.
Our network deeply embeds cross-image feature correlation in multiple layers of the feature network.
Our model can be flexibly pre-trained on abundant unpaired images, leading to notably faster convergence than the existing methods.
arXiv Detail & Related papers (2022-03-03T11:53:54Z) - Deep Feature Tracker: A Novel Application for Deep Convolutional Neural
Networks [0.0]
We propose a novel and unified deep learning-based approach that can learn how to track features reliably.
The proposed network dubbed as Deep-PT consists of a tracker network which is a convolutional neural network cross-correlation.
The network is trained using multiple datasets due to the lack of specialized dataset for feature tracking datasets.
arXiv Detail & Related papers (2021-07-30T23:24:29Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
We propose an end-to-end network for joint object detection and tracking based on radar and camera sensor fusion.
Our proposed method uses a center-based radar-camera fusion algorithm for object detection and utilizes a greedy algorithm for object association.
We evaluate our method on the challenging nuScenes dataset, where it achieves 20.0 AMOTA and outperforms all vision-based 3D tracking methods in the benchmark.
arXiv Detail & Related papers (2021-07-11T23:56:53Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
A practical long-term tracker typically contains three key properties, i.e. an efficient model design, an effective global re-detection strategy and a robust distractor awareness mechanism.
We propose a two-task tracking frame work (named DMTrack) to achieve distractor-aware fast tracking via Dynamic convolutions (d-convs) and Multiple object tracking (MOT) philosophy.
Our tracker achieves state-of-the-art performance on the LaSOT, OxUvA, TLP, VOT2018LT and VOT 2019LT benchmarks and runs in real-time (3x faster
arXiv Detail & Related papers (2021-04-25T00:59:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.