論文の概要: Improving Transferable Targeted Adversarial Attack via Normalized Logit Calibration and Truncated Feature Mixing
- arxiv url: http://arxiv.org/abs/2405.06340v1
- Date: Fri, 10 May 2024 09:13:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 16:07:56.589885
- Title: Improving Transferable Targeted Adversarial Attack via Normalized Logit Calibration and Truncated Feature Mixing
- Title(参考訳): 正規化ロジット校正と切り裂き特徴混合による移動可能な対向攻撃の改善
- Authors: Juanjuan Weng, Zhiming Luo, Shaozi Li,
- Abstract要約: 損失・特徴面から目標転送可能性を改善するための2つの手法を提案する。
以前のアプローチでは、ロジットキャリブレーションは主にターゲットクラスとサンプル間の未ターゲットクラスの間のロジットマージンに焦点を当てていた。
本稿では,ロジットマージンと標準偏差を共同で検討する正規化ロジット校正手法を提案する。
- 参考スコア(独自算出の注目度): 26.159434438078968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims to enhance the transferability of adversarial samples in targeted attacks, where attack success rates remain comparatively low. To achieve this objective, we propose two distinct techniques for improving the targeted transferability from the loss and feature aspects. First, in previous approaches, logit calibrations used in targeted attacks primarily focus on the logit margin between the targeted class and the untargeted classes among samples, neglecting the standard deviation of the logit. In contrast, we introduce a new normalized logit calibration method that jointly considers the logit margin and the standard deviation of logits. This approach effectively calibrates the logits, enhancing the targeted transferability. Second, previous studies have demonstrated that mixing the features of clean samples during optimization can significantly increase transferability. Building upon this, we further investigate a truncated feature mixing method to reduce the impact of the source training model, resulting in additional improvements. The truncated feature is determined by removing the Rank-1 feature associated with the largest singular value decomposed from the high-level convolutional layers of the clean sample. Extensive experiments conducted on the ImageNet-Compatible and CIFAR-10 datasets demonstrate the individual and mutual benefits of our proposed two components, which outperform the state-of-the-art methods by a large margin in black-box targeted attacks.
- Abstract(参考訳): 本稿では,攻撃成功率が比較的低いターゲット攻撃において,敵のサンプルの転送可能性を高めることを目的とする。
この目的を達成するために,目的の伝達性を改善するための2つの異なる手法を提案する。
まず、以前のアプローチでは、ターゲットアタックで使用されるロジットキャリブレーションは、ターゲットクラスと対象クラスの未ターゲットクラスのロジットマージンに重点を置いており、ロジットの標準偏差を無視している。
対照的に,ロジットマージンと標準偏差を共同で検討する正規化ロジット校正法を導入する。
このアプローチはロジットを効果的に校正し、ターゲットの転送可能性を高める。
第2に、前回の研究では、最適化中にクリーンサンプルの特徴を混合することで、転送可能性を大幅に向上させることを示した。
これに基づいて、ソーストレーニングモデルの影響を低減し、さらなる改善をもたらすために、切り離された特徴混合法をさらに検討する。
クリーンサンプルの高レベルな畳み込み層から分解された最大の特異値に関連するランク1特徴を除去することにより、切り詰められた特徴を判定する。
ImageNet-CompatibleとCIFAR-10データセットで実施された大規模な実験は、提案した2つのコンポーネントの個人的および相互利益を実証する。
関連論文リスト
- Boosting Imperceptibility of Stable Diffusion-based Adversarial Examples Generation with Momentum [13.305800254250789]
我々は,SD-MIAE(SD-MIAE)という新しいフレームワークを提案する。
視覚的不受容性を保ち、元のクラスラベルとのセマンティックな類似性を保ちながら、ニューラルネットワーク分類器を効果的に誤解させることができる敵の例を生成する。
実験の結果,SD-MIAEは79%の誤分類率を示し,最先端法よりも35%向上した。
論文 参考訳(メタデータ) (2024-10-17T01:22:11Z) - TransFusion: Covariate-Shift Robust Transfer Learning for High-Dimensional Regression [11.040033344386366]
対象タスクの学習性能を限定的なサンプルで向上させるため, 新規な融合正規化器を用いた2段階の手法を提案する。
対象モデルの推定誤差に対して、漸近的境界が提供される。
提案手法を分散設定に拡張し,事前学習ファインタニング戦略を実現する。
論文 参考訳(メタデータ) (2024-04-01T14:58:16Z) - Improving Adversarial Transferability via Intermediate-level
Perturbation Decay [79.07074710460012]
我々は,一段階の最適化で敵の例を再現する新しい中間レベル手法を開発した。
実験結果から, 種々の犠牲者モデルに対する攻撃において, 最先端技術よりも大きな差が認められた。
論文 参考訳(メタデータ) (2023-04-26T09:49:55Z) - Logit Margin Matters: Improving Transferable Targeted Adversarial Attack
by Logit Calibration [85.71545080119026]
クロスエントロピー(CE)損失関数は、伝達可能な標的対向例を学習するには不十分である。
本稿では,ロジットを温度係数と適応マージンでダウンスケールすることで,ロジットのキャリブレーションを簡易かつ効果的に行う2つの手法を提案する。
ImageNetデータセットを用いて実験を行い,提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2023-03-07T06:42:52Z) - Query-Efficient Black-box Adversarial Attacks Guided by a Transfer-based
Prior [50.393092185611536]
対象モデルの勾配にアクセスできることなく、敵が敵の例を作らなければならないブラックボックスの敵設定を考える。
従来の手法では、代用ホワイトボックスモデルの転送勾配を用いたり、モデルクエリのフィードバックに基づいて真の勾配を近似しようとした。
偏りサンプリングと勾配平均化に基づく2つの事前誘導型ランダム勾配フリー(PRGF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-13T04:06:27Z) - Adaptive Perturbation for Adversarial Attack [50.77612889697216]
そこで本研究では,新たな逆例に対する勾配に基づく攻撃手法を提案する。
逆方向の摂動を発生させるために,スケーリング係数を用いた正確な勾配方向を用いる。
本手法は, 高い伝達性を示し, 最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-11-27T07:57:41Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
転送ベースの敵攻撃はブラックボックス設定におけるモデルロバスト性を効果的に評価することができる。
本稿では,異なるクラスを対象にした対角的例を生成する条件生成攻撃モデルを提案する。
提案手法は,既存の手法と比較して,標的となるブラックボックス攻撃の成功率を大幅に向上させる。
論文 参考訳(メタデータ) (2021-07-05T06:17:47Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
ドメイン適応(DA)は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的とする。
本稿では,教師なしキーポイント検出のためのレグレッシブドメイン適応(RegDA)法を提案する。
提案手法は,異なるデータセット上のPCKにおいて,8%から11%の大幅な改善をもたらす。
論文 参考訳(メタデータ) (2021-03-10T16:45:22Z) - Self-adaptive Re-weighted Adversarial Domain Adaptation [12.73753413032972]
自己適応型再重み付き対向ドメイン適応手法を提案する。
条件分布の観点からドメインアライメントを強化する。
実証的な証拠は、提案されたモデルが標準的なドメイン適応データセットで芸術の状態を上回ります。
論文 参考訳(メタデータ) (2020-05-30T08:35:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。