論文の概要: Akal Badi ya Bias: An Exploratory Study of Gender Bias in Hindi Language Technology
- arxiv url: http://arxiv.org/abs/2405.06346v1
- Date: Fri, 10 May 2024 09:26:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 16:07:56.582435
- Title: Akal Badi ya Bias: An Exploratory Study of Gender Bias in Hindi Language Technology
- Title(参考訳): Akal Badi ya Bias:ヒンディー語技術におけるジェンダーバイアスの探索的研究
- Authors: Rishav Hada, Safiya Husain, Varun Gumma, Harshita Diddee, Aditya Yadavalli, Agrima Seth, Nidhi Kulkarni, Ujwal Gadiraju, Aditya Vashistha, Vivek Seshadri, Kalika Bali,
- Abstract要約: ジェンダーバイアスの測定と緩和に関する既存の研究は、主に英語に焦点を当てている。
本稿では,ヒンディー語におけるジェンダーバイアスの微妙な風景を掘り下げる最初の総合的研究について述べる。
- 参考スコア(独自算出の注目度): 22.458957168929487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing research in measuring and mitigating gender bias predominantly centers on English, overlooking the intricate challenges posed by non-English languages and the Global South. This paper presents the first comprehensive study delving into the nuanced landscape of gender bias in Hindi, the third most spoken language globally. Our study employs diverse mining techniques, computational models, field studies and sheds light on the limitations of current methodologies. Given the challenges faced with mining gender biased statements in Hindi using existing methods, we conducted field studies to bootstrap the collection of such sentences. Through field studies involving rural and low-income community women, we uncover diverse perceptions of gender bias, underscoring the necessity for context-specific approaches. This paper advocates for a community-centric research design, amplifying voices often marginalized in previous studies. Our findings not only contribute to the understanding of gender bias in Hindi but also establish a foundation for further exploration of Indic languages. By exploring the intricacies of this understudied context, we call for thoughtful engagement with gender bias, promoting inclusivity and equity in linguistic and cultural contexts beyond the Global North.
- Abstract(参考訳): ジェンダーバイアスの測定と緩和に関する既存の研究は、主に英語に焦点を当てており、非英語言語やグローバル・サウスによって引き起こされる複雑な課題を見越している。
本稿では,ヒンディー語におけるジェンダーバイアスの微妙な景観について,世界第3位の言語である,初めて包括的研究を行った。
本研究は, 種々の鉱業技術, 計算モデル, フィールド研究を応用し, 現状の方法論の限界に光を当てる。
既存の手法を用いてヒンディー語における性別偏見文の抽出に直面する課題を考慮し,このような文の収集をブートストラップするフィールドスタディを実施した。
田園部・低所得地域女性を対象としたフィールドスタディを通じて,ジェンダーバイアスの多様な認識を明らかにするとともに,文脈依存的アプローチの必要性を浮き彫りにした。
本稿では,コミュニティ中心の研究デザインを提唱する。
我々の発見はヒンディー語におけるジェンダーバイアスの理解に寄与するだけでなく、インド語のさらなる探究の基盤も確立している。
この未調査の文脈の複雑さを探求することで、私たちは、グローバル・ノースを超えた言語的・文化的文脈におけるインクリシティとエクイティの促進を、ジェンダーバイアスとの思慮深い関わりを求める。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - A Multilingual Perspective on Probing Gender Bias [0.0]
ジェンダーバイアスは、性別に基づいて個人を標的とする体系的なネガティブな治療の一形態である。
この論文は、ジェンダーバイアスが言語および言語技術を通してどのように表現されるかというニュアンスについて考察する。
論文 参考訳(メタデータ) (2024-03-15T21:35:21Z) - On Evaluating and Mitigating Gender Biases in Multilingual Settings [5.248564173595024]
複数言語設定におけるバイアスの評価と緩和に関する課題について検討する。
まず,事前学習したマスキング言語モデルにおいて,性別バイアスを評価するベンチマークを作成する。
我々は、様々なデバイアス法を英語以上に拡張し、SOTAの大規模多言語モデルの有効性を評価する。
論文 参考訳(メタデータ) (2023-07-04T06:23:04Z) - "I'm fully who I am": Towards Centering Transgender and Non-Binary
Voices to Measure Biases in Open Language Generation [69.25368160338043]
トランスジェンダーとノンバイナリ(TGNB)の個人は、日常生活から差別や排除を不当に経験している。
オープン・ランゲージ・ジェネレーションにおいて,経験豊富なTGNB人物の疎外化を取り巻く社会的現実がいかに貢献し,持続するかを評価する。
我々はTGNB指向のコミュニティからキュレートされたテンプレートベースの実世界のテキストのデータセットであるTANGOを紹介する。
論文 参考訳(メタデータ) (2023-05-17T04:21:45Z) - Efficient Gender Debiasing of Pre-trained Indic Language Models [0.0]
言語モデルが事前訓練されたデータに存在する性別バイアスは、これらのモデルを使用するシステムに反映される。
本稿では,ヒンディー語モデルにおける職業に関する性別バイアスを測定した。
以上の結果から,提案手法の適応後のバイアスが低減されることが示唆された。
論文 参考訳(メタデータ) (2022-09-08T09:15:58Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
本研究では,事前学習したニューラルジェネレーションモデルにおける性別バイアスの程度に,高齢者がどのような影響を及ぼすかを検討する。
以上の結果から, GPT-2は, 両領域において, 女性を中年, 男性を中年として考えることにより, 偏見を増幅することが示された。
以上の結果から, GPT-2を用いて構築したNLPアプリケーションは, プロの能力において女性に害を与える可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-19T20:05:02Z) - Mitigating Gender Stereotypes in Hindi and Marathi [1.2891210250935146]
本稿ではヒンディー語とマラティー語におけるジェンダーステレオタイプを評価する。
我々は、エンベディング・コヒーレンス・テスト(ECT)と相対ノルム距離(RND)の助けを借りて、中立的およびジェンダー化された職業語、感情語、および測定バイアスのデータセットを作成する。
実験の結果,提案手法は,これらの言語における性バイアスを減少させることがわかった。
論文 参考訳(メタデータ) (2022-05-12T06:46:53Z) - A Survey on Gender Bias in Natural Language Processing [22.91475787277623]
自然言語処理における性別バイアスに関する304論文について調査する。
ジェンダーバイアスの検出と緩和に対するコントラストアプローチの比較を行った。
性別偏見の研究は、4つの中核的な限界に悩まされている。
論文 参考訳(メタデータ) (2021-12-28T14:54:18Z) - Quantifying Gender Bias Towards Politicians in Cross-Lingual Language
Models [104.41668491794974]
代名詞として政治家の名前を取り巻く言語モデルによって生成される形容詞と動詞の用法を定量化する。
死者や指定された言葉が男女の政治家と関連しているのに対し、美人や離婚といった特定の言葉が主に女性政治家に関係していることが判明した。
論文 参考訳(メタデータ) (2021-04-15T15:03:26Z) - They, Them, Theirs: Rewriting with Gender-Neutral English [56.14842450974887]
私たちは、英語でジェンダーインクルージョンを促進する一般的な方法である特異点についてケーススタディを行います。
本研究では, 人為的データを持たない1%の単語誤り率で, ジェンダーニュートラルな英語を学習できるモデルについて述べる。
論文 参考訳(メタデータ) (2021-02-12T21:47:48Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。