Statistical mechanics from relational complex time with a pure state
- URL: http://arxiv.org/abs/2405.06401v1
- Date: Fri, 10 May 2024 11:26:05 GMT
- Title: Statistical mechanics from relational complex time with a pure state
- Authors: Sebastian Gemsheim, Jan M. Rost,
- Abstract summary: Canonical typicality has related statistical mechanics for a system to ensembles of global energy eigen- states of system and its environment.
We show that the canonical density for a system emerges from a maximally entangled global state of system and environment.
- Score: 0.4143603294943439
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Thermodynamics and its quantum counterpart are traditionally described with statistical ensembles. Canonical typicality has related statistical mechanics for a system to ensembles of global energy eigen- states of system and its environment analyzing their cardinality. We show that the canonical density for a system emerges from a maximally entangled global state of system and environment through relational complex time evolution between system and environment without the need to maximize the entropy or to count states.
Related papers
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Stability of Quantum Systems beyond Canonical Typicality [9.632520418947305]
We analyze the statistical distribution of a quantum system coupled strongly with a heat bath.
The stability of system distribution is largely affected by the system--bath interaction strength.
arXiv Detail & Related papers (2024-07-22T02:59:04Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.
We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.
We establish that scaling predictions are matched by a privileged process, and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all timescales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Canonical typicality under general quantum channels [39.58317527488534]
In the present work we employ quantum channels to define generalized subsystems.
We show that generalized subsystems also display the phenomena of canonical typicality.
In particular we demonstrate that the property regulating the emergence of the canonical typicality behavior is the entropy of the channel used to define the generalized subsystem.
arXiv Detail & Related papers (2023-08-30T21:29:45Z) - Entropy of the Canonical Occupancy (Macro) State in the Quantum
Measurement Theory [0.0]
The paper analyzes the probability distribution of the occupancy numbers and the entropy of a system at the equilibrium composed by an arbitrary number of non-interacting bosons.
arXiv Detail & Related papers (2023-08-08T10:26:11Z) - High-dimensional monitoring and the emergence of realism via multiple observers [41.94295877935867]
Correlation is the basic mechanism of every measurement model.
We introduce a model that interpolates between weak and strong non-selective measurements for qudits.
arXiv Detail & Related papers (2023-05-13T13:42:19Z) - Ensemble dependence of information-theoretic contributions to the
entropy production [0.0]
entropy production of an open system coupled to a reservoir in a canonical state can be expressed as a sum of two microscopic information-theoretic contributions.
We show that while in such a case the entropy production can still be expressed as a sum of the mutual information between the system and the bath, the relative weight of those contributions depends on the initial state of the reservoir.
arXiv Detail & Related papers (2023-01-30T17:03:31Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Peaceful coexistence of thermal equilibrium and the emergence of time [0.0]
We consider a quantum Universe composed by a small system S and a large environment.
Time and non-equilibrium dynamics can emerge as a consequence of the entanglement between the system and the environment.
arXiv Detail & Related papers (2021-12-08T00:36:27Z) - Hierarchical-environment-assisted non-Markovian and its effect on
thermodynamic properties [15.450802027885135]
We show how the non-Markovian character of the system is influenced by the coupling strength of system-auxiliary system and auxiliary system-reservoir.
And the information flow between the system and environment is always accompanied by energy exchange.
arXiv Detail & Related papers (2020-10-26T17:47:27Z) - Assessing the role of initial correlations in the entropy production
rate for non-equilibrium harmonic dynamics [0.0]
We shed light on the relation between correlations, initial preparation of the system and non-Markovianity.
We show that the global purity of the initial state of the system influences the behaviour of the entropy production rate.
arXiv Detail & Related papers (2020-04-22T17:29:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.