論文の概要: Visualizing Neural Network Imagination
- arxiv url: http://arxiv.org/abs/2405.06409v1
- Date: Fri, 10 May 2024 11:43:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 15:58:09.056386
- Title: Visualizing Neural Network Imagination
- Title(参考訳): ニューラルネットワークイマジネーションの可視化
- Authors: Nevan Wichers, Victor Tao, Riccardo Volpato, Fazl Barez,
- Abstract要約: ある状況では、ニューラルネットワークは、隠れたアクティベーションの環境状態を表現します。
私たちのゴールは、ネットワークが表現している環境を可視化することです。
定量的解釈可能性尺度を定義し、隠れた状態が高度に解釈可能であることを示す。
- 参考スコア(独自算出の注目度): 2.1749194587826026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In certain situations, neural networks will represent environment states in their hidden activations. Our goal is to visualize what environment states the networks are representing. We experiment with a recurrent neural network (RNN) architecture with a decoder network at the end. After training, we apply the decoder to the intermediate representations of the network to visualize what they represent. We define a quantitative interpretability metric and use it to demonstrate that hidden states can be highly interpretable on a simple task. We also develop autoencoder and adversarial techniques and show that benefit interpretability.
- Abstract(参考訳): ある状況では、ニューラルネットワークは、隠れたアクティベーションの環境状態を表現します。
私たちのゴールは、ネットワークが表現している環境を可視化することです。
終端にデコーダネットワークを備えたリカレントニューラルネットワーク(RNN)アーキテクチャを実験する。
トレーニング後、ネットワークの中間表現にデコーダを適用して、その表現を視覚化する。
定量的解釈可能性尺度を定義して,隠れた状態が簡単なタスクで高度に解釈可能であることを示す。
また,オートエンコーダと対角法を開発し,解釈可能性を示す。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Saliency Suppressed, Semantics Surfaced: Visual Transformations in Neural Networks and the Brain [0.0]
私たちは神経科学からインスピレーションを得て、ニューラルネットワークが情報を低(視覚的満足度)で高(セマンティックな類似性)の抽象レベルでエンコードする方法について光を当てています。
ResNetsは、オブジェクト分類の目的によって訓練された場合、ViTsよりも唾液度情報に敏感であることが分かりました。
我々は、セマンティックエンコーディングがAIと人間の視覚知覚を協調させる重要な要素であることを示し、サリエンシ抑制は非脳的な戦略であることを示した。
論文 参考訳(メタデータ) (2024-04-29T15:05:42Z) - Seeing in Words: Learning to Classify through Language Bottlenecks [59.97827889540685]
人間は簡潔で直感的な説明を使って予測を説明することができる。
特徴表現がテキストである視覚モデルでは,画像ネットイメージを効果的に分類できることを示す。
論文 参考訳(メタデータ) (2023-06-29T00:24:42Z) - Don't trust your eyes: on the (un)reliability of feature visualizations [25.018840023636546]
自然入力上での通常のネットワーク動作から完全に切り離された任意のパターンを示すために、特徴視覚化をトリックする方法を示す。
次に、標準の無人ネットワークで同様の現象が起こる証拠を提供する。
これは機能ビジュアライゼーションの正当性チェックとして使用できる。
論文 参考訳(メタデータ) (2023-06-07T18:31:39Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Discovering "Semantics" in Super-Resolution Networks [54.45509260681529]
超解像(SR)は低レベルの視覚領域の基本的で代表的な課題である。
一般に、SRネットワークから抽出された特徴は特定の意味情報を持たないと考えられている。
SRネットワークで「セマンティック」を見つけることはできますか?
論文 参考訳(メタデータ) (2021-08-01T09:12:44Z) - Controlled Caption Generation for Images Through Adversarial Attacks [85.66266989600572]
画像特徴抽出には畳み込みニューラルネットワーク(CNN)、キャプション生成にはリカレントニューラルネットワーク(RNN)が使用される。
特に、その後の再帰的ネットワークに供給される視覚エンコーダの隠蔽層に対する攻撃について検討する。
本稿では、CNNの内部表現を模倣したニューラルネットワークキャプションの逆例を作成するためのGANベースのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-07-07T07:22:41Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
本稿では,画像分類と画像生成ネットワーク内の隠れ単位を系統的に同定する分析フレームワークを提案する。
まず、シーン分類に基づいて訓練された畳み込みニューラルネットワーク(CNN)を分析し、多様なオブジェクト概念にマッチするユニットを発見する。
第2に、シーンを生成するために訓練されたGANモデルについて、同様の分析手法を用いて分析する。
論文 参考訳(メタデータ) (2020-09-10T17:59:10Z) - Visual Pattern Recognition with on On-chip Learning: towards a Fully
Neuromorphic Approach [10.181725314550823]
ニューロモルフィックハードウェア上でのオンチップ学習による視覚パターン認識のためのスパイキングニューラルネットワーク(SNN)を提案する。
このネットワークは、ダイナミック・ビジョン・センサーによって知覚される水平と垂直のバーからなる単純な視覚パターンを学習することができることを示す。
認識中、ネットワークはパターンのアイデンティティを分類し、同時にその位置とスケールを推定する。
論文 参考訳(メタデータ) (2020-08-08T08:07:36Z) - The Representation Theory of Neural Networks [7.724617675868718]
ニューラルネットワークは、量子表現の数学的理論によって表現できることを示す。
ネットワーククイバーが共通のニューラルネットワークの概念に優しく適応していることを示します。
また、ニューラルネットワークがデータから表現を生成する方法を理解するためのクイバー表現モデルも提供します。
論文 参考訳(メタデータ) (2020-07-23T19:02:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。