論文の概要: Saliency Suppressed, Semantics Surfaced: Visual Transformations in Neural Networks and the Brain
- arxiv url: http://arxiv.org/abs/2404.18772v1
- Date: Mon, 29 Apr 2024 15:05:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 13:18:30.908573
- Title: Saliency Suppressed, Semantics Surfaced: Visual Transformations in Neural Networks and the Brain
- Title(参考訳): ニューラルネットワークと脳における視覚変換
- Authors: Gustaw Opiełka, Jessica Loke, Steven Scholte,
- Abstract要約: 私たちは神経科学からインスピレーションを得て、ニューラルネットワークが情報を低(視覚的満足度)で高(セマンティックな類似性)の抽象レベルでエンコードする方法について光を当てています。
ResNetsは、オブジェクト分類の目的によって訓練された場合、ViTsよりも唾液度情報に敏感であることが分かりました。
我々は、セマンティックエンコーディングがAIと人間の視覚知覚を協調させる重要な要素であることを示し、サリエンシ抑制は非脳的な戦略であることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning algorithms lack human-interpretable accounts of how they transform raw visual input into a robust semantic understanding, which impedes comparisons between different architectures, training objectives, and the human brain. In this work, we take inspiration from neuroscience and employ representational approaches to shed light on how neural networks encode information at low (visual saliency) and high (semantic similarity) levels of abstraction. Moreover, we introduce a custom image dataset where we systematically manipulate salient and semantic information. We find that ResNets are more sensitive to saliency information than ViTs, when trained with object classification objectives. We uncover that networks suppress saliency in early layers, a process enhanced by natural language supervision (CLIP) in ResNets. CLIP also enhances semantic encoding in both architectures. Finally, we show that semantic encoding is a key factor in aligning AI with human visual perception, while saliency suppression is a non-brain-like strategy.
- Abstract(参考訳): ディープラーニングアルゴリズムには、生の視覚入力を堅牢な意味理解に変換する方法について、人間の解釈可能な説明がない。
本研究では、神経科学からインスピレーションを得て、ニューラルネットワークが低(視覚的サリエンス)かつ高(セマンティックな類似性)の抽象レベルで情報をエンコードする方法について、表現的アプローチを採用する。
さらに,サリエントやセマンティックな情報を体系的に操作するカスタムイメージデータセットも導入する。
ResNetsは、オブジェクト分類の目的によって訓練された場合、ViTsよりも唾液度情報に敏感であることが分かりました。
ResNetsの自然言語監視(CLIP)によって強化されたプロセスである初期の階層におけるサリエンシの抑制が明らかになった。
CLIPはまた、両方のアーキテクチャにおけるセマンティックエンコーディングを強化する。
最後に、セマンティックエンコーディングはAIと人間の視覚的知覚を協調させる上で重要な要素であり、サリエンシ抑制は非脳的な戦略であることを示す。
関連論文リスト
- Decoding Visual Experience and Mapping Semantics through Whole-Brain Analysis Using fMRI Foundation Models [10.615012396285337]
我々は脳全体の活性化マップを組み込むことで視覚過程の理解を高めるアルゴリズムを開発した。
まず,視覚処理を復号化するための最先端手法と比較し,予測意味精度を43%向上させた。
論文 参考訳(メタデータ) (2024-11-11T16:51:17Z) - Learning Object-Centric Representation via Reverse Hierarchy Guidance [73.05170419085796]
OCL(Object-Centric Learning)は、ニューラルネットワークが視覚的なシーンで個々のオブジェクトを識別できるようにする。
RHGNetは、トレーニングと推論プロセスにおいて、さまざまな方法で機能するトップダウンパスを導入している。
我々のモデルは、よく使われる複数のデータセット上でSOTA性能を達成する。
論文 参考訳(メタデータ) (2024-05-17T07:48:27Z) - Visualizing Neural Network Imagination [2.1749194587826026]
ある状況では、ニューラルネットワークは、隠れたアクティベーションの環境状態を表現します。
私たちのゴールは、ネットワークが表現している環境を可視化することです。
定量的解釈可能性尺度を定義し、隠れた状態が高度に解釈可能であることを示す。
論文 参考訳(メタデータ) (2024-05-10T11:43:35Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Brain Decodes Deep Nets [9.302098067235507]
我々は、脳にマッピングすることで、大きな訓練済み視覚モデルの可視化と解析を行うツールを開発した。
私たちのイノベーションは、画像に反応して脳のfMRI測定を予測する脳エンコーディングの驚くべき利用から生まれます。
論文 参考訳(メタデータ) (2023-12-03T04:36:04Z) - Seeing in Words: Learning to Classify through Language Bottlenecks [59.97827889540685]
人間は簡潔で直感的な説明を使って予測を説明することができる。
特徴表現がテキストである視覚モデルでは,画像ネットイメージを効果的に分類できることを示す。
論文 参考訳(メタデータ) (2023-06-29T00:24:42Z) - Connecting metrics for shape-texture knowledge in computer vision [1.7785095623975342]
深層ニューラルネットワークは、人間が画像の分類ミスを起こさないような、画像の多くの変化の影響を受けやすいままである。
この異なる振る舞いの一部は、視覚タスクで人間とディープニューラルネットワークが使用する機能の種類によって説明できるかもしれない。
論文 参考訳(メタデータ) (2023-01-25T14:37:42Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Controlled Caption Generation for Images Through Adversarial Attacks [85.66266989600572]
画像特徴抽出には畳み込みニューラルネットワーク(CNN)、キャプション生成にはリカレントニューラルネットワーク(RNN)が使用される。
特に、その後の再帰的ネットワークに供給される視覚エンコーダの隠蔽層に対する攻撃について検討する。
本稿では、CNNの内部表現を模倣したニューラルネットワークキャプションの逆例を作成するためのGANベースのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-07-07T07:22:41Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
本稿では,画像分類と画像生成ネットワーク内の隠れ単位を系統的に同定する分析フレームワークを提案する。
まず、シーン分類に基づいて訓練された畳み込みニューラルネットワーク(CNN)を分析し、多様なオブジェクト概念にマッチするユニットを発見する。
第2に、シーンを生成するために訓練されたGANモデルについて、同様の分析手法を用いて分析する。
論文 参考訳(メタデータ) (2020-09-10T17:59:10Z) - Deep learning approaches for neural decoding: from CNNs to LSTMs and
spikes to fMRI [2.0178765779788495]
神経信号から直接の行動、知覚、認知状態の復号化は、脳-コンピュータインタフェースの研究に応用されている。
過去10年間で、ディープラーニングは多くの機械学習タスクにおいて最先端の手法になっている。
ディープラーニングは、幅広いタスクにわたるニューラルデコーディングの正確性と柔軟性を改善するための有用なツールであることが示されている。
論文 参考訳(メタデータ) (2020-05-19T18:10:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。