Fair Mixed Effects Support Vector Machine
- URL: http://arxiv.org/abs/2405.06433v5
- Date: Tue, 26 Nov 2024 11:49:48 GMT
- Title: Fair Mixed Effects Support Vector Machine
- Authors: João Vitor Pamplona, Jan Pablo Burgard,
- Abstract summary: Fairness in machine learning aims to mitigate biases present in the training data and model imperfections.
This is achieved by preventing the model from making decisions based on sensitive characteristics like ethnicity or sexual orientation.
We present a fair mixed effects support vector machine algorithm that can handle both problems simultaneously.
- Score: 0.0
- License:
- Abstract: To ensure unbiased and ethical automated predictions, fairness must be a core principle in machine learning applications. Fairness in machine learning aims to mitigate biases present in the training data and model imperfections that could lead to discriminatory outcomes. This is achieved by preventing the model from making decisions based on sensitive characteristics like ethnicity or sexual orientation. A fundamental assumption in machine learning is the independence of observations. However, this assumption often does not hold true for data describing social phenomena, where data points are often clustered based. Hence, if the machine learning models do not account for the cluster correlations, the results may be biased. Especially high is the bias in cases where the cluster assignment is correlated to the variable of interest. We present a fair mixed effects support vector machine algorithm that can handle both problems simultaneously. With a reproducible simulation study we demonstrate the impact of clustered data on the quality of fair machine learning predictions.
Related papers
- Fair Generalized Linear Mixed Models [0.0]
Fairness in machine learning aims to ensure that biases in the data and model inaccuracies do not lead to discriminatory decisions.
We present an algorithm that can handle both problems simultaneously.
arXiv Detail & Related papers (2024-05-15T11:42:41Z) - Machine Unlearning for Causal Inference [0.6621714555125157]
It is important to enable the model to forget some of its learning/captured information about a given user (machine unlearning)
This paper introduces the concept of machine unlearning for causal inference, particularly propensity score matching and treatment effect estimation.
The dataset used in the study is the Lalonde dataset, a widely used dataset for evaluating the effectiveness of job training programs.
arXiv Detail & Related papers (2023-08-24T17:27:01Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Matched Machine Learning: A Generalized Framework for Treatment Effect
Inference With Learned Metrics [87.05961347040237]
We introduce Matched Machine Learning, a framework that combines the flexibility of machine learning black boxes with the interpretability of matching.
Our framework uses machine learning to learn an optimal metric for matching units and estimating outcomes.
We show empirically that instances of Matched Machine Learning perform on par with black-box machine learning methods and better than existing matching methods for similar problems.
arXiv Detail & Related papers (2023-04-03T19:32:30Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
Building trustworthy, effective, and responsible machine learning systems hinges on understanding how differences in training data and modeling decisions interact to impact predictive performance.
We focus on a particular type of data-model inefficiency, in which adding training data from some sources can actually lower performance evaluated on key sub-groups of the population.
Our results indicate that data-efficiency is a key component of both accurate and trustworthy machine learning.
arXiv Detail & Related papers (2022-11-11T16:48:27Z) - Investigating Bias with a Synthetic Data Generator: Empirical Evidence
and Philosophical Interpretation [66.64736150040093]
Machine learning applications are becoming increasingly pervasive in our society.
Risk is that they will systematically spread the bias embedded in data.
We propose to analyze biases by introducing a framework for generating synthetic data with specific types of bias and their combinations.
arXiv Detail & Related papers (2022-09-13T11:18:50Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Prisoners of Their Own Devices: How Models Induce Data Bias in
Performative Prediction [4.874780144224057]
A biased model can make decisions that disproportionately harm certain groups in society.
Much work has been devoted to measuring unfairness in static ML environments, but not in dynamic, performative prediction ones.
We propose a taxonomy to characterize bias in the data, and study cases where it is shaped by model behaviour.
arXiv Detail & Related papers (2022-06-27T10:56:04Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z) - Modeling Generalization in Machine Learning: A Methodological and
Computational Study [0.8057006406834467]
We use the concept of the convex hull of the training data in assessing machine learning generalization.
We observe unexpectedly weak associations between the generalization ability of machine learning models and all metrics related to dimensionality.
arXiv Detail & Related papers (2020-06-28T19:06:16Z) - On Adversarial Bias and the Robustness of Fair Machine Learning [11.584571002297217]
We show that giving the same importance to groups of different sizes and distributions, to counteract the effect of bias in training data, can be in conflict with robustness.
An adversary who can control sampling or labeling for a fraction of training data, can reduce the test accuracy significantly beyond what he can achieve on unconstrained models.
We analyze the robustness of fair machine learning through an empirical evaluation of attacks on multiple algorithms and benchmark datasets.
arXiv Detail & Related papers (2020-06-15T18:17:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.