MRSegmentator: Multi-Modality Segmentation of 40 Classes in MRI and CT
- URL: http://arxiv.org/abs/2405.06463v3
- Date: Thu, 14 Nov 2024 19:06:05 GMT
- Title: MRSegmentator: Multi-Modality Segmentation of 40 Classes in MRI and CT
- Authors: Hartmut Häntze, Lina Xu, Christian J. Mertens, Felix J. Dorfner, Leonhard Donle, Felix Busch, Avan Kader, Sebastian Ziegelmayer, Nadine Bayerl, Nassir Navab, Daniel Rueckert, Julia Schnabel, Hugo JWL Aerts, Daniel Truhn, Fabian Bamberg, Jakob Weiß, Christopher L. Schlett, Steffen Ringhof, Thoralf Niendorf, Tobias Pischon, Hans-Ulrich Kauczor, Tobias Nonnenmacher, Thomas Kröncke, Henry Völzke, Jeanette Schulz-Menger, Klaus Maier-Hein, Mathias Prokop, Bram van Ginneken, Alessa Hering, Marcus R. Makowski, Lisa C. Adams, Keno K. Bressem,
- Abstract summary: The model was trained on 1,200 manually annotated 3D axial MRI scans from the UK Biobank, 221 in-house MRI scans, and 1228 CT scans.
It demonstrated high accuracy for well-defined organs (lungs: DSC 0.96, heart: DSC 0.94) and organs with anatomic variability (liver: DSC 0.96, kidneys: DSC 0.95)
It generalized well to CT, achieving DSC mean of 0.84 $pm$ 0.11 on AMOS CT data.
- Score: 29.48170108608303
- License:
- Abstract: Purpose: To develop and evaluate a deep learning model for multi-organ segmentation of MRI scans. Materials and Methods: The model was trained on 1,200 manually annotated 3D axial MRI scans from the UK Biobank, 221 in-house MRI scans, and 1228 CT scans from the TotalSegmentator dataset. A human-in-the-loop annotation workflow was employed, leveraging cross-modality transfer learning from an existing CT segmentation model to segment 40 anatomical structures. The annotation process began with a model based on transfer learning between CT and MR, which was iteratively refined based on manual corrections to predicted segmentations. The model's performance was evaluated on MRI examinations obtained from the German National Cohort (NAKO) study (n=900) from the AMOS22 dataset (n=60) and from the TotalSegmentator-MRI test data (n=29). The Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) were used to assess segmentation quality, stratified by organ and scan type. The model and its weights will be open-sourced. Results: MRSegmentator demonstrated high accuracy for well-defined organs (lungs: DSC 0.96, heart: DSC 0.94) and organs with anatomic variability (liver: DSC 0.96, kidneys: DSC 0.95). Smaller structures showed lower accuracy (portal/splenic veins: DSC 0.64, adrenal glands: DSC 0.69). On external validation using NAKO data, mean DSC ranged from 0.85 $\pm$ 0.08 for T2-HASTE to 0.91 $\pm$ 0.05 for in-phase sequences. The model generalized well to CT, achieving mean DSC of 0.84 $\pm$ 0.11 on AMOS CT data. Conclusion: MRSegmentator accurately segments 40 anatomical structures in MRI across diverse datasets and imaging protocols, with additional generalizability to CT images. This open-source model will provide a valuable tool for automated multi-organ segmentation in medical imaging research. It can be downloaded from https://github.com/hhaentze/MRSegmentator.
Related papers
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - MRISegmentator-Abdomen: A Fully Automated Multi-Organ and Structure Segmentation Tool for T1-weighted Abdominal MRI [12.236789438183138]
There is no publicly available abdominal MRI dataset with voxel-level annotations of multiple organs and structures.
A 3D nnUNet model, dubbed as MRISegmentator-Abdomen (MRISegmentator in short), was trained on this dataset.
The tool provides automatic, accurate, and robust segmentations of 62 organs and structures in T1-weighted abdominal MRI sequences.
arXiv Detail & Related papers (2024-05-09T17:33:09Z) - Minimally Interactive Segmentation of Soft-Tissue Tumors on CT and MRI
using Deep Learning [0.0]
We develop a minimally interactive deep learning-based segmentation method for soft-tissue tumors (STTs) on CT and MRI.
The method requires the user to click six points near the tumor's extreme boundaries to serve as input for a Convolutional Neural Network.
arXiv Detail & Related papers (2024-02-12T16:15:28Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
We propose a weakly-supervised deep learning framework that preserves the rigidity and the volume of each vertebra while maximizing the accuracy of the registration.
We specifically design these losses to depend only on the CT label maps since automatic vertebra segmentation in CT gives more accurate results contrary to MRI.
Our results show that adding the anatomy-aware losses increases the plausibility of the inferred transformation while keeping the accuracy untouched.
arXiv Detail & Related papers (2022-05-16T10:59:55Z) - A self-supervised learning strategy for postoperative brain cavity
segmentation simulating resections [46.414990784180546]
Convolutional neural networks (CNNs) are the state-of-the-art image segmentation technique.
CNNs require large annotated datasets for training.
Self-supervised learning strategies can leverage unlabeled data for training.
arXiv Detail & Related papers (2021-05-24T12:27:06Z) - 3D Graph Anatomy Geometry-Integrated Network for Pancreatic Mass
Segmentation, Diagnosis, and Quantitative Patient Management [21.788423806147378]
We exploit the feasibility to distinguish pancreatic ductal adenocarcinoma (PDAC) from the nine other nonPDAC masses using multi-phase CT imaging.
We propose a holistic segmentation-mesh-classification network (SMCN) to provide patient-level diagnosis.
arXiv Detail & Related papers (2020-12-08T19:38:01Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.