論文の概要: OneTo3D: One Image to Re-editable Dynamic 3D Model and Video Generation
- arxiv url: http://arxiv.org/abs/2405.06547v1
- Date: Fri, 10 May 2024 15:44:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 15:28:24.858144
- Title: OneTo3D: One Image to Re-editable Dynamic 3D Model and Video Generation
- Title(参考訳): OneTo3D:ダイナミックな3Dモデルとビデオ生成を再編集できるワンイメージ
- Authors: Jinwei Lin,
- Abstract要約: 編集可能なダイナミック3Dモデルとビデオ生成のための1つの画像は、単一の画像の研究領域を3D表現や画像の3D再構成に変換する新しい方向と変化である。
編集可能な3Dモデルを生成し,対象とする連続時間無制限の3Dビデオを生成するために,単一の画像を使用する方法と理論であるOneTo3Dを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One image to editable dynamic 3D model and video generation is novel direction and change in the research area of single image to 3D representation or 3D reconstruction of image. Gaussian Splatting has demonstrated its advantages in implicit 3D reconstruction, compared with the original Neural Radiance Fields. As the rapid development of technologies and principles, people tried to used the Stable Diffusion models to generate targeted models with text instructions. However, using the normal implicit machine learning methods is hard to gain the precise motions and actions control, further more, it is difficult to generate a long content and semantic continuous 3D video. To address this issue, we propose the OneTo3D, a method and theory to used one single image to generate the editable 3D model and generate the targeted semantic continuous time-unlimited 3D video. We used a normal basic Gaussian Splatting model to generate the 3D model from a single image, which requires less volume of video memory and computer calculation ability. Subsequently, we designed an automatic generation and self-adaptive binding mechanism for the object armature. Combined with the re-editable motions and actions analyzing and controlling algorithm we proposed, we can achieve a better performance than the SOTA projects in the area of building the 3D model precise motions and actions control, and generating a stable semantic continuous time-unlimited 3D video with the input text instructions. Here we will analyze the detailed implementation methods and theories analyses. Relative comparisons and conclusions will be presented. The project code is open source.
- Abstract(参考訳): 編集可能なダイナミック3Dモデルとビデオ生成のための1つの画像は、単一の画像の研究領域を3D表現や画像の3D再構成に変換する新しい方向と変化である。
ガウススプラッティングは、オリジナルのニューラルレイディアンス場と比較して、暗黙の3次元再構成においてその利点を証明している。
技術や原則の急速な発展に伴い、人々はテキスト命令でターゲットモデルを生成するために安定拡散モデルを使おうとした。
しかし、通常の暗黙的な機械学習手法を用いることで、正確な動きやアクション制御を得ることは困難であり、さらに、長いコンテンツとセマンティックな連続した3Dビデオを生成することは困難である。
この問題に対処するために,1つの画像を用いて編集可能な3Dモデルを生成し,対象とするセマンティックな連続時間無制限の3Dビデオを生成する方法と理論であるOneTo3Dを提案する。
画像から3次元モデルを生成するため,通常の基本ガウススプラッティングモデルを用いて,ビデオメモリの容量削減とコンピュータ計算能力の向上を図った。
その後,自動生成と自己適応型結合機構を設計した。
提案したアルゴリズムと組み合わせることで、3Dモデル精密動作と動作制御の領域におけるSOTAプロジェクトよりも優れたパフォーマンスを実現し、入力されたテキスト命令で安定したセマンティックな連続時間無制限の3Dビデオを生成することができる。
ここでは、詳細な実装方法と理論分析について分析する。
相対的な比較と結論が提示される。
プロジェクトコードはオープンソースである。
関連論文リスト
- Vid3D: Synthesis of Dynamic 3D Scenes using 2D Video Diffusion [3.545941891218148]
本稿では,現在のアプローチのように時間とともに多視点一貫性を明示的に実施する必要があるか,あるいはモデルが各タイムステップの3次元表現を独立に生成するのに十分なのかを検討する。
本稿では,2次元映像拡散を利用して3次元映像を生成するモデルVid3Dを提案する。
論文 参考訳(メタデータ) (2024-06-17T04:09:04Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
テキストプロンプトから高品質な3Dアセットを作成するための拡散型3D生成モデルであるDIRECT-3Dを提案する。
我々のモデルは、広範に騒々しく不整合な3D資産で直接訓練されている。
単一クラス生成とテキスト・ツー・3D生成の両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T17:58:15Z) - SuperGaussian: Repurposing Video Models for 3D Super Resolution [67.19266415499139]
本稿では,幾何学的および外観的詳細を付加することにより,粗い3次元モデルをアップサンプルする,単純でモジュラーで汎用的な手法を提案する。
既存の3次元超解像モデルを直接再利用できることを実証する。
論文 参考訳(メタデータ) (2024-06-02T03:44:50Z) - VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models [20.084928490309313]
本稿では,事前学習ビデオ拡散モデルを用いたスケーラブルな3次元生成モデル構築手法を提案する。
微調整により多視点生成能力を解放することにより、大規模な合成多視点データセットを生成し、フィードフォワード3D生成モデルを訓練する。
提案したモデルであるVFusion3Dは、ほぼ3Mの合成マルチビューデータに基づいて訓練され、単一の画像から数秒で3Dアセットを生成することができる。
論文 参考訳(メタデータ) (2024-03-18T17:59:12Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
本稿では,2次元拡散モデル以前の自然画像と,現在のシーンのグローバルな3次元情報を利用して,高品質で新しいコンテンツを合成する生成的精細化ネットワークを提案する。
提案手法は,視覚的品質と3次元の整合性を改善した多種多様なシーン生成と任意のカメラトラジェクトリをサポートする。
論文 参考訳(メタデータ) (2024-03-14T14:31:22Z) - Geometry aware 3D generation from in-the-wild images in ImageNet [18.157263188192434]
本稿では,カメラポーズ情報のない多種多様な非構造化画像ネットから3次元形状を再構成する手法を提案する。
2次元画像から3次元モデルを学習し,StyleGAN2に基づいて生成元バックボーンのアーキテクチャを変更するために,効率的な三面体表現を用いる。
訓練されたジェネレータは、任意の視点からのレンダリングだけでなく、クラス条件の3Dモデルを生成することができる。
論文 参考訳(メタデータ) (2024-01-31T23:06:39Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3Dは拡散モデルに基づく3Dアバター生成のためのテキスト・画像誘導生成モデルである。
我々のフレームワークは、トポロジカルかつ構造的に正しい幾何と高分解能なテクスチャを生成する。
論文 参考訳(メタデータ) (2023-08-18T17:55:47Z) - GET3D--: Learning GET3D from Unconstrained Image Collections [27.470617383305726]
本研究では2次元画像から直接テクスチャ化された3次元形状を生成できるGET3D-を提案する。
GET3D--は3D形状のジェネレータと、カメラ上の6D外部変化をキャプチャする学習可能なカメラサンプリング器を備える。
論文 参考訳(メタデータ) (2023-07-27T15:00:54Z) - 3D-TOGO: Towards Text-Guided Cross-Category 3D Object Generation [107.46972849241168]
3D-TOGOモデルは、良好なテクスチャを持つニューラルレージアンスフィールドの形で3Dオブジェクトを生成する。
最大3Dオブジェクトデータセット(ABO)の実験を行い、3D-TOGOが高品質な3Dオブジェクトをより良く生成できることを検証する。
論文 参考訳(メタデータ) (2022-12-02T11:31:49Z) - GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images [72.15855070133425]
本稿では,複雑なトポロジ,リッチな幾何学的ディテール,高忠実度テクスチャを備えたExplicit Textured 3Dメッシュを直接生成する生成モデルであるGET3Dを紹介する。
GET3Dは、車、椅子、動物、バイク、人間キャラクターから建物まで、高品質な3Dテクスチャメッシュを生成することができる。
論文 参考訳(メタデータ) (2022-09-22T17:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。