Faster entanglement driven by quantum resonance in many-body kicked rotors
- URL: http://arxiv.org/abs/2405.06622v2
- Date: Mon, 3 Jun 2024 17:15:48 GMT
- Title: Faster entanglement driven by quantum resonance in many-body kicked rotors
- Authors: Sanku Paul, J. Bharathi Kannan, M. S. Santhanam,
- Abstract summary: Quantum resonance in the paradigmatic kicked rotor system is a purely quantum effect that ignores the state of underlying classical chaos.
In this work, it is shown that quantum resonance leads to superlinear entanglement production.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum resonance in the paradigmatic kicked rotor system is a purely quantum effect that ignores the state of underlying classical chaos. In this work, it is shown that quantum resonance leads to superlinear entanglement production. In $N$-interacting kicked rotors set to be at quantum resonance, entanglement growth is super-linear until a crossover timescale $t^*$, beyond which growth slows down to a logarithmic form with superimposed oscillations. By mapping positional interaction to momentum space and analytically assessing the linear entropy, we unravel the mechanism driving these two distinct growth profiles. The analytical results agree with the numerical simulations performed for two- and three-interacting kicked rotors. The late time entanglement oscillation is sensitive to changes in scaled Planck's constant with a high quality factor suitable for high precision measurements. These results are amenable to an experimental realization on atom optics setup.
Related papers
- Out-Of-Time-Ordered-Correlators for the Pure Inverted Quartic Oscillator: Classical Chaos meets Quantum Stability [0.0]
Out-of-time-ordered-correlators (OTOCs) have been suggested as a means to diagnose chaotic behavior in quantum mechanical systems.
I study OTOCs for the inverted anharmonic (pure quartic) oscillator in quantum mechanics.
For higher temperature, OTOCs seem to exhibit saturation consistent with a value of $-2 langle x2 rangle_T langle p2 rangle_T$ at late times.
arXiv Detail & Related papers (2024-08-22T18:00:00Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Squeezing oscillations in a multimode bosonic Josephson junction [0.4335300149154109]
We show how to enhance the quantum correlations in a one-dimensional multimode bosonic Josephson junction.
Our work provides new ways for engineering correlations and entanglement in the external degree of freedom of interacting many-body systems.
arXiv Detail & Related papers (2023-04-05T23:29:05Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Harmonic dual dressing of spin one-half systems [0.0]
Controlled modifications of the quantum magnetic response are produced in dressed systems by a high frequency, strong and not-resonant electromagnetic field.
The secondary field enables a fine tuning of the qubit response, with control parameters amplitude, harmonic content, spatial orientation and phase relation.
arXiv Detail & Related papers (2021-08-18T14:36:10Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Observation of high-order Mollow triplet by quantum mode control with
concatenated continuous driving [8.674241138986925]
We report the first observation of high-order effects in the Mollow triplet structure due to strong driving.
Results are validated by the Floquet theory.
arXiv Detail & Related papers (2020-08-14T16:02:05Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.