ProtLLM: An Interleaved Protein-Language LLM with Protein-as-Word Pre-Training
- URL: http://arxiv.org/abs/2403.07920v1
- Date: Wed, 28 Feb 2024 01:29:55 GMT
- Title: ProtLLM: An Interleaved Protein-Language LLM with Protein-as-Word Pre-Training
- Authors: Le Zhuo, Zewen Chi, Minghao Xu, Heyan Huang, Heqi Zheng, Conghui He, Xian-Ling Mao, Wentao Zhang,
- Abstract summary: We propose a versatile cross-modal large language model (LLM) for both protein-centric and protein-language tasks.
ProtLLM features a unique dynamic protein mounting mechanism, enabling it to handle complex inputs.
By developing a specialized protein vocabulary, we equip the model with the capability to predict not just natural language but also proteins from a vast pool of candidates.
- Score: 82.37346937497136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose ProtLLM, a versatile cross-modal large language model (LLM) for both protein-centric and protein-language tasks. ProtLLM features a unique dynamic protein mounting mechanism, enabling it to handle complex inputs where the natural language text is interspersed with an arbitrary number of proteins. Besides, we propose the protein-as-word language modeling approach to train ProtLLM. By developing a specialized protein vocabulary, we equip the model with the capability to predict not just natural language but also proteins from a vast pool of candidates. Additionally, we construct a large-scale interleaved protein-text dataset, named InterPT, for pre-training. This dataset comprehensively encompasses both (1) structured data sources like protein annotations and (2) unstructured data sources like biological research papers, thereby endowing ProtLLM with crucial knowledge for understanding proteins. We evaluate ProtLLM on classic supervised protein-centric tasks and explore its novel protein-language applications. Experimental results demonstrate that ProtLLM not only achieves superior performance against protein-specialized baselines on protein-centric tasks but also induces zero-shot and in-context learning capabilities on protein-language tasks.
Related papers
- Long-context Protein Language Model [76.95505296417866]
Self-supervised training of language models (LMs) has seen great success for protein sequences in learning meaningful representations and for generative drug design.
Most protein LMs are based on the Transformer architecture trained on individual proteins with short context lengths.
We propose LC-PLM based on an alternative protein LM architecture, BiMamba-S, built off selective structured state-space models.
We also introduce its graph-contextual variant, LC-PLM-G, which contextualizes protein-protein interaction graphs for a second stage of training.
arXiv Detail & Related papers (2024-10-29T16:43:28Z) - A Fine-tuning Dataset and Benchmark for Large Language Models for Protein Understanding [10.652670673334486]
ProteinLMBench is the first benchmark dataset consisting of 944 manually verified multiple-choice questions for assessing the protein understanding capabilities of LLMs.
ProteinLMDataset is a dataset specifically designed for further self-supervised pretraining and supervised fine-tuning.
InternLM2-7B, pretrained and fine-tuned on the ProteinLMDataset, outperforms GPT-4 on ProteinLMBench, achieving the highest accuracy score.
arXiv Detail & Related papers (2024-06-08T18:11:30Z) - ProtT3: Protein-to-Text Generation for Text-based Protein Understanding [88.43323947543996]
Language Models (LMs) excel in understanding textual descriptions of proteins.
Protein Language Models (PLMs) can understand and convert protein data into high-quality representations, but struggle to process texts.
We introduce ProtT3, a framework for Protein-to-Text Generation for Text-based Protein Understanding.
arXiv Detail & Related papers (2024-05-21T08:06:13Z) - ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction [54.132290875513405]
The prediction of protein-protein interactions (PPIs) is crucial for understanding biological functions and diseases.
Previous machine learning approaches to PPI prediction mainly focus on direct physical interactions.
We propose a novel framework ProLLM that employs an LLM tailored for PPI for the first time.
arXiv Detail & Related papers (2024-03-30T05:32:42Z) - InstructProtein: Aligning Human and Protein Language via Knowledge
Instruction [38.46621806898224]
Large Language Models (LLMs) have revolutionized the field of natural language processing, but they fall short in comprehending biological sequences such as proteins.
We propose InstructProtein, which possesses bidirectional generation capabilities in both human and protein languages.
InstructProtein serves as a pioneering step towards text-based protein function prediction and sequence design.
arXiv Detail & Related papers (2023-10-05T02:45:39Z) - A Text-guided Protein Design Framework [106.79061950107922]
We propose ProteinDT, a multi-modal framework that leverages textual descriptions for protein design.
ProteinDT consists of three subsequent steps: ProteinCLAP which aligns the representation of two modalities, a facilitator that generates the protein representation from the text modality, and a decoder that creates the protein sequences from the representation.
We quantitatively verify the effectiveness of ProteinDT on three challenging tasks: (1) over 90% accuracy for text-guided protein generation; (2) best hit ratio on 12 zero-shot text-guided protein editing tasks; (3) superior performance on four out of six protein property prediction benchmarks.
arXiv Detail & Related papers (2023-02-09T12:59:16Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
We propose a novel structure-aware protein self-supervised learning method to capture structural information of proteins.
In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information.
We identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme.
arXiv Detail & Related papers (2022-04-06T02:18:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.