ProtT3: Protein-to-Text Generation for Text-based Protein Understanding
- URL: http://arxiv.org/abs/2405.12564v1
- Date: Tue, 21 May 2024 08:06:13 GMT
- Title: ProtT3: Protein-to-Text Generation for Text-based Protein Understanding
- Authors: Zhiyuan Liu, An Zhang, Hao Fei, Enzhi Zhang, Xiang Wang, Kenji Kawaguchi, Tat-Seng Chua,
- Abstract summary: Language Models (LMs) excel in understanding textual descriptions of proteins.
Protein Language Models (PLMs) can understand and convert protein data into high-quality representations, but struggle to process texts.
We introduce ProtT3, a framework for Protein-to-Text Generation for Text-based Protein Understanding.
- Score: 88.43323947543996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language Models (LMs) excel in understanding textual descriptions of proteins, as evident in biomedical question-answering tasks. However, their capability falters with raw protein data, such as amino acid sequences, due to a deficit in pretraining on such data. Conversely, Protein Language Models (PLMs) can understand and convert protein data into high-quality representations, but struggle to process texts. To address their limitations, we introduce ProtT3, a framework for Protein-to-Text Generation for Text-based Protein Understanding. ProtT3 empowers an LM to understand protein sequences of amino acids by incorporating a PLM as its protein understanding module, enabling effective protein-to-text generation. This collaboration between PLM and LM is facilitated by a cross-modal projector (i.e., Q-Former) that bridges the modality gap between the PLM's representation space and the LM's input space. Unlike previous studies focusing on protein property prediction and protein-text retrieval, we delve into the largely unexplored field of protein-to-text generation. To facilitate comprehensive benchmarks and promote future research, we establish quantitative evaluations for protein-text modeling tasks, including protein captioning, protein question-answering, and protein-text retrieval. Our experiments show that ProtT3 substantially surpasses current baselines, with ablation studies further highlighting the efficacy of its core components. Our code is available at https://github.com/acharkq/ProtT3.
Related papers
- Computational Protein Science in the Era of Large Language Models (LLMs) [54.35488233989787]
Computational protein science is dedicated to revealing knowledge and developing applications within the protein sequence-structure-function paradigm.
Recently, Language Models (pLMs) have emerged as a milestone in AI due to their unprecedented language processing & generalization capability.
arXiv Detail & Related papers (2025-01-17T16:21:18Z) - EvoLlama: Enhancing LLMs' Understanding of Proteins via Multimodal Structure and Sequence Representations [28.298740080002077]
Current Large Language Models (LLMs) for understanding proteins primarily treats amino acid sequences as a text modality.
EvoLlama is a framework that connects a structure-based encoder, a sequence-based protein encoder and an LLM for protein understanding.
Our experiments show that EvoLlama's protein understanding capabilities have been significantly enhanced.
arXiv Detail & Related papers (2024-12-16T10:01:33Z) - ProtDAT: A Unified Framework for Protein Sequence Design from Any Protein Text Description [7.198238666986253]
We propose a de novo fine-grained framework capable of designing proteins from any descriptive text input.
Prot DAT builds upon the inherent characteristics of protein data to unify sequences and text as a cohesive whole rather than separate entities.
Experimental results demonstrate that Prot DAT achieves the state-of-the-art performance in protein sequence generation, excelling in rationality, functionality, structural similarity, and validity.
arXiv Detail & Related papers (2024-12-05T11:05:46Z) - Long-context Protein Language Model [76.95505296417866]
Self-supervised training of language models (LMs) has seen great success for protein sequences in learning meaningful representations and for generative drug design.
Most protein LMs are based on the Transformer architecture trained on individual proteins with short context lengths.
We propose LC-PLM based on an alternative protein LM architecture, BiMamba-S, built off selective structured state-space models.
We also introduce its graph-contextual variant, LC-PLM-G, which contextualizes protein-protein interaction graphs for a second stage of training.
arXiv Detail & Related papers (2024-10-29T16:43:28Z) - ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction [54.132290875513405]
The prediction of protein-protein interactions (PPIs) is crucial for understanding biological functions and diseases.
Previous machine learning approaches to PPI prediction mainly focus on direct physical interactions.
We propose a novel framework ProLLM that employs an LLM tailored for PPI for the first time.
arXiv Detail & Related papers (2024-03-30T05:32:42Z) - ProtLLM: An Interleaved Protein-Language LLM with Protein-as-Word Pre-Training [82.37346937497136]
We propose a versatile cross-modal large language model (LLM) for both protein-centric and protein-language tasks.
ProtLLM features a unique dynamic protein mounting mechanism, enabling it to handle complex inputs.
By developing a specialized protein vocabulary, we equip the model with the capability to predict not just natural language but also proteins from a vast pool of candidates.
arXiv Detail & Related papers (2024-02-28T01:29:55Z) - A Text-guided Protein Design Framework [106.79061950107922]
We propose ProteinDT, a multi-modal framework that leverages textual descriptions for protein design.
ProteinDT consists of three subsequent steps: ProteinCLAP which aligns the representation of two modalities, a facilitator that generates the protein representation from the text modality, and a decoder that creates the protein sequences from the representation.
We quantitatively verify the effectiveness of ProteinDT on three challenging tasks: (1) over 90% accuracy for text-guided protein generation; (2) best hit ratio on 12 zero-shot text-guided protein editing tasks; (3) superior performance on four out of six protein property prediction benchmarks.
arXiv Detail & Related papers (2023-02-09T12:59:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.