Sentiment Polarity Analysis of Bangla Food Reviews Using Machine and Deep Learning Algorithms
- URL: http://arxiv.org/abs/2405.06667v1
- Date: Fri, 3 May 2024 09:49:46 GMT
- Title: Sentiment Polarity Analysis of Bangla Food Reviews Using Machine and Deep Learning Algorithms
- Authors: Al Amin, Anik Sarkar, Md Mahamodul Islam, Asif Ahammad Miazee, Md Robiul Islam, Md Mahmudul Hoque,
- Abstract summary: A significant portion of the population utilizes online food ordering services to have meals delivered to their residences.
Our endeavor was to establish a model that could determine if food is of good or poor quality.
We compiled a dataset of over 1484 online reviews from prominent food ordering platforms, including Food Panda and HungryNaki.
- Score: 1.102674168371806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Internet has become an essential tool for people in the modern world. Humans, like all living organisms, have essential requirements for survival. These include access to atmospheric oxygen, potable water, protective shelter, and sustenance. The constant flux of the world is making our existence less complicated. A significant portion of the population utilizes online food ordering services to have meals delivered to their residences. Although there are numerous methods for ordering food, customers sometimes experience disappointment with the food they receive. Our endeavor was to establish a model that could determine if food is of good or poor quality. We compiled an extensive dataset of over 1484 online reviews from prominent food ordering platforms, including Food Panda and HungryNaki. Leveraging the collected data, a rigorous assessment of various deep learning and machine learning techniques was performed to determine the most accurate approach for predicting food quality. Out of all the algorithms evaluated, logistic regression emerged as the most accurate, achieving an impressive 90.91% accuracy. The review offers valuable insights that will guide the user in deciding whether or not to order the food.
Related papers
- NutrifyAI: An AI-Powered System for Real-Time Food Detection, Nutritional Analysis, and Personalized Meal Recommendations [14.036206693783198]
This paper introduces a comprehensive system that combines advanced computer vision techniques with nutritional analysis, implemented in a versatile mobile and web application.
Preliminary results showcase the system's effectiveness by providing immediate, accurate dietary insights, with a demonstrated food recognition accuracy of nearly 80%.
arXiv Detail & Related papers (2024-08-20T04:18:53Z) - NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
arXiv Detail & Related papers (2024-05-13T14:56:55Z) - How Much You Ate? Food Portion Estimation on Spoons [63.611551981684244]
Current image-based food portion estimation algorithms assume that users take images of their meals one or two times.
We introduce an innovative solution that utilizes stationary user-facing cameras to track food items on utensils.
The system is reliable for estimation of nutritional content of liquid-solid heterogeneous mixtures such as soups and stews.
arXiv Detail & Related papers (2024-05-12T00:16:02Z) - NutritionVerse-Real: An Open Access Manually Collected 2D Food Scene
Dataset for Dietary Intake Estimation [68.49526750115429]
We introduce NutritionVerse-Real, an open access manually collected 2D food scene dataset for dietary intake estimation.
The NutritionVerse-Real dataset was created by manually collecting images of food scenes in real life, measuring the weight of every ingredient and computing the associated dietary content of each dish.
arXiv Detail & Related papers (2023-11-20T11:05:20Z) - NutritionVerse: Empirical Study of Various Dietary Intake Estimation Approaches [59.38343165508926]
Accurate dietary intake estimation is critical for informing policies and programs to support healthy eating.
Recent work has focused on using computer vision and machine learning to automatically estimate dietary intake from food images.
We introduce NutritionVerse- Synth, the first large-scale dataset of 84,984 synthetic 2D food images with associated dietary information.
We also collect a real image dataset, NutritionVerse-Real, containing 889 images of 251 dishes to evaluate realism.
arXiv Detail & Related papers (2023-09-14T13:29:41Z) - Cook-Gen: Robust Generative Modeling of Cooking Actions from Recipes [6.666528076345153]
Food computation models have become increasingly popular in assisting people in maintaining healthy eating habits.
In this study, we explore the use of generative AI methods to extend current food computation models to include cooking actions.
We propose novel aggregation-based generative AI methods, Cook-Gen, that reliably generate cooking actions from recipes.
arXiv Detail & Related papers (2023-06-01T18:49:47Z) - Machine Learning for Food Review and Recommendation [15.373693401378834]
We use different deep learning approaches to address the problems of sentiment analysis, automatic review tag generation, and retrieval of food reviews.
We propose to develop a web-based food review system at Nanyang Technological University named NTU Food Hunter.
arXiv Detail & Related papers (2022-01-15T02:33:59Z) - Learning Personal Food Preferences via Food Logs Embedding [1.1534313664323634]
We propose a method for learning food preferences from food logs.
Our proposed approach identifies 82% of a user's ten most frequently eaten foods.
arXiv Detail & Related papers (2021-10-29T02:36:24Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
This review presents one unified Vision-Based Dietary Assessment (VBDA) framework, which generally consists of three stages: food image analysis, volume estimation and nutrient derivation.
Deep learning makes VBDA gradually move to an end-to-end implementation, which applies food images to a single network to directly estimate the nutrition.
arXiv Detail & Related papers (2021-08-06T05:46:01Z) - Towards Building a Food Knowledge Graph for Internet of Food [66.57235827087092]
We review the evolution of food knowledge organization, from food classification to food to food knowledge graphs.
Food knowledge graphs play an important role in food search and Question Answering (QA), personalized dietary recommendation, food analysis and visualization.
Future directions for food knowledge graphs cover several fields such as multimodal food knowledge graphs and food intelligence.
arXiv Detail & Related papers (2021-07-13T06:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.