論文の概要: TLINet: Differentiable Neural Network Temporal Logic Inference
- arxiv url: http://arxiv.org/abs/2405.06670v2
- Date: Tue, 14 May 2024 18:30:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 15:24:45.367399
- Title: TLINet: Differentiable Neural Network Temporal Logic Inference
- Title(参考訳): TLINet: ニューラルネットワークの時間論理推論
- Authors: Danyang Li, Mingyu Cai, Cristian-Ioan Vasile, Roberto Tron,
- Abstract要約: 本稿では,STL式を学習するニューラルネットワークシンボリックフレームワークであるTLINetを紹介する。
従来の手法とは対照的に,時間論理に基づく勾配法に特化して設計された最大演算子の近似法を導入する。
我々のフレームワークは、構造だけでなく、STL公式のパラメータも学習し、演算子と様々な論理構造の柔軟な組み合わせを可能にします。
- 参考スコア(独自算出の注目度): 10.36033062385604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been a growing interest in extracting formal descriptions of the system behaviors from data. Signal Temporal Logic (STL) is an expressive formal language used to describe spatial-temporal properties with interpretability. This paper introduces TLINet, a neural-symbolic framework for learning STL formulas. The computation in TLINet is differentiable, enabling the usage of off-the-shelf gradient-based tools during the learning process. In contrast to existing approaches, we introduce approximation methods for max operator designed specifically for temporal logic-based gradient techniques, ensuring the correctness of STL satisfaction evaluation. Our framework not only learns the structure but also the parameters of STL formulas, allowing flexible combinations of operators and various logical structures. We validate TLINet against state-of-the-art baselines, demonstrating that our approach outperforms these baselines in terms of interpretability, compactness, rich expressibility, and computational efficiency.
- Abstract(参考訳): データからシステム動作の形式的な記述を抽出することへの関心が高まっている。
信号時相論理 (Signal Temporal Logic, STL) は、空間的時間的特性を解釈可能性で記述するために用いられる表現的形式言語である。
本稿では,STL式を学習するニューラルネットワークシンボリックフレームワークであるTLINetを紹介する。
TLINetの計算は微分可能であり、学習プロセス中に既製の勾配ベースのツールを使用することができる。
従来の手法とは対照的に,時間論理に基づく勾配法に特化して設計された最大演算子の近似法を導入し,STL満足度評価の正しさを保証した。
我々のフレームワークは、構造だけでなく、STL公式のパラメータも学習し、演算子と様々な論理構造の柔軟な組み合わせを可能にします。
我々はTLINetを最先端のベースラインに対して検証し、我々のアプローチが解釈可能性、コンパクト性、豊かな表現性、計算効率でこれらのベースラインより優れていることを示した。
関連論文リスト
- Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
概念的には、LOCCOは、トレーニング対象のセマンティクスを使用してラベルなしテキストのアノテーションを生成する、自己学習の一形態と見なすことができる。
追加ボーナスとして、LOCCOによって生成されたアノテーションは、神経テキスト生成モデルをトレーニングするために自明に再利用することができる。
論文 参考訳(メタデータ) (2023-05-31T16:47:20Z) - Standpoint Linear Temporal Logic [2.552459629685159]
本稿では,表象の時間的特徴とSLのマルチパースペクティブ・モデリング能力を組み合わせた新たな論理である,点点線形時間論理(SLTL)を提案する。
論理SLTLとその構文とその意味を定義し、決定可能性を確立し、複雑性を減らし、SLTL推論を自動化するための表計算を提供する。
論文 参考訳(メタデータ) (2023-04-27T15:03:38Z) - Mastering Symbolic Operations: Augmenting Language Models with Compiled
Neural Networks [48.14324895100478]
ニューラルアーキテクチャ」は、コンパイルされたニューラルネットワーク(CoNN)を標準変換器に統合する。
CoNNは、人工的に生成された注意重みを通してルールを明示的にエンコードするように設計されたニューラルネットワークモジュールである。
実験は,シンボル操作における長さ一般化,効率,解釈可能性の観点から,既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-04T09:50:07Z) - Learning Signal Temporal Logic through Neural Network for Interpretable
Classification [13.829082181692872]
本稿では時系列行動の分類のための説明可能なニューラルネットワーク・シンボリック・フレームワークを提案する。
提案手法の計算効率, コンパクト性, 解釈可能性について, シナリオの駆動と海軍の監視事例研究を通じて実証する。
論文 参考訳(メタデータ) (2022-10-04T21:11:54Z) - Object Representations as Fixed Points: Training Iterative Refinement
Algorithms with Implicit Differentiation [88.14365009076907]
反復的洗練は表現学習に有用なパラダイムである。
トレーニングの安定性とトラクタビリティを向上させる暗黙の差別化アプローチを開発する。
論文 参考訳(メタデータ) (2022-07-02T10:00:35Z) - Linear Temporal Logic Modulo Theories over Finite Traces (Extended
Version) [72.38188258853155]
有限トレース(LTLf)上の線形時間論理について検討する。
命題の文字は任意の理論で解釈された一階述語式に置き換えられる。
Satisfiability Modulo Theories (LTLfMT) と呼ばれる結果の論理は半決定可能である。
論文 参考訳(メタデータ) (2022-04-28T17:57:33Z) - Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks [65.23508422635862]
我々は最近提案された論理ニューラルネットワーク(LNN)を用いた学習規則を提案する。
他のものと比較して、LNNは古典的なブール論理と強く結びついている。
標準ベンチマークタスクの実験では、LNNルールが極めて解釈可能であることを確認した。
論文 参考訳(メタデータ) (2021-12-06T19:38:30Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
本研究では,時間論理仕様を満たすための学習課題を,未知の環境下でエージェントのグループで検討する。
我々は、時間論理仕様のための最初のマルチエージェント強化学習手法を開発した。
主アルゴリズムの正確性と収束性を保証する。
論文 参考訳(メタデータ) (2021-02-01T01:13:03Z) - Backpropagation through Signal Temporal Logic Specifications: Infusing
Logical Structure into Gradient-Based Methods [28.72161643908351]
本稿では,STLCG(Signal Temporal Logic)公式の定量的意味を計算グラフを用いて計算する手法を提案する。
STLは、連続系とハイブリッド系の両方で生成される信号の空間的および時間的特性を指定できる、強力で表現力のある形式言語である。
論文 参考訳(メタデータ) (2020-07-31T22:01:39Z) - Explaining Multi-stage Tasks by Learning Temporal Logic Formulas from
Suboptimal Demonstrations [6.950510860295866]
本稿では,一貫した線形時間論理式(LTL)の論理構造と原子命題を学習し,実演から多段階タスクを学習する手法を提案する。
学習者は、その式を満足しながらコスト関数を最適化し、学習者にはコスト関数が不確実な場合において、成功しているが潜在的に最適でないデモンストレーションが与えられる。
提案アルゴリズムでは,デモのKKT(Karush-Kuhn-Tucker)最適条件と反例誘導ファルシフィケーション戦略を用いて,原子命題パラメータを学習する。
論文 参考訳(メタデータ) (2020-06-03T17:40:14Z) - Learning Interpretable Models in the Property Specification Language [6.875312133832079]
IEEE標準時相論理PSLにおける公式の学習アルゴリズムを開発した。
私たちの研究は、n番目の点ごとに起こる事象のような多くの自然の性質が、言葉で表現できないという事実に動機づけられている。
論文 参考訳(メタデータ) (2020-02-10T11:42:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。