論文の概要: DrugLLM: Open Large Language Model for Few-shot Molecule Generation
- arxiv url: http://arxiv.org/abs/2405.06690v1
- Date: Tue, 7 May 2024 09:18:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 20:41:54.804806
- Title: DrugLLM: Open Large Language Model for Few-shot Molecule Generation
- Title(参考訳): DrugLLM:Few-shot Molecule Generationのためのオープンな大規模言語モデル
- Authors: Xianggen Liu, Yan Guo, Haoran Li, Jin Liu, Shudong Huang, Bowen Ke, Jiancheng Lv,
- Abstract要約: DrugLLMは、過去の修飾に基づいて次の分子を予測することで、薬物発見における分子の修飾方法を学ぶ。
計算実験では、限られた例に基づいて期待された特性を持つ新しい分子を生成することができる。
- 参考スコア(独自算出の注目度): 20.680942401843772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have made great strides in areas such as language processing and computer vision. Despite the emergence of diverse techniques to improve few-shot learning capacity, current LLMs fall short in handling the languages in biology and chemistry. For example, they are struggling to capture the relationship between molecule structure and pharmacochemical properties. Consequently, the few-shot learning capacity of small-molecule drug modification remains impeded. In this work, we introduced DrugLLM, a LLM tailored for drug design. During the training process, we employed Group-based Molecular Representation (GMR) to represent molecules, arranging them in sequences that reflect modifications aimed at enhancing specific molecular properties. DrugLLM learns how to modify molecules in drug discovery by predicting the next molecule based on past modifications. Extensive computational experiments demonstrate that DrugLLM can generate new molecules with expected properties based on limited examples, presenting a powerful few-shot molecule generation capacity.
- Abstract(参考訳): 大きな言語モデル(LLM)は、言語処理やコンピュータビジョンといった分野で大きな進歩を遂げています。
数発の学習能力を改善する多様な技術が出現したが、現在のLLMは生物学や化学における言語を扱うには不足している。
例えば、分子構造と薬理化学的性質の関係を捉えるのに苦労している。
結果として、小分子の薬物修飾による数発の学習能力が妨げられている。
そこで本研究では,薬物設計に適したLLMであるD薬LLMを紹介した。
トレーニングの過程では,GMR(Group-based Molecular Representation)を用いて分子を表現し,特定の分子特性の向上を目的とした修飾を反映した配列を配置した。
DrugLLMは、過去の修飾に基づいて次の分子を予測することで、薬物発見における分子の修飾方法を学ぶ。
大規模な計算実験により、ドラッグLLMは限られた例に基づいて期待された特性を持つ新しい分子を生成できることが示され、強力な数発の分子生成能力が提示された。
関連論文リスト
- LDMol: Text-Conditioned Molecule Diffusion Model Leveraging Chemically Informative Latent Space [55.5427001668863]
本稿では, LDMol と呼ばれる新しい潜伏拡散モデルを提案する。
具体的には、化学情報的特徴空間を生成する分子エンコーダ、拡散変換器(DiT)を用いた自然言語条件の潜伏拡散モデル、および分子回帰のための自己回帰デコーダの3つの構成要素から構成される。
論文 参考訳(メタデータ) (2024-05-28T04:59:13Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [50.756644656847165]
本稿では,学生に類似した多制約分子生成大言語モデルTSMMGを紹介する。
TSMMGを訓練するために、これらの「教師」から分子知識を抽出し、大量のテキスト-分子対を構築する。
我々は,TSMMGが複雑で自然言語で記述された特性を満たす分子を生成できることを実験的に明らかにした。
論文 参考訳(メタデータ) (2024-03-20T02:15:55Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Interactive Molecular Discovery with Natural Language [69.89287960545903]
対象分子を記述・編集するための自然言語を用いた対話型分子設計を提案する。
この課題をより良くするために、実験プロパティ情報を注入することによって強化された知識的で汎用的な生成事前学習モデルChatMolを設計する。
論文 参考訳(メタデータ) (2023-06-21T02:05:48Z) - MolCAP: Molecular Chemical reActivity pretraining and
prompted-finetuning enhanced molecular representation learning [3.179128580341411]
MolCAPは、化学反応性(IMR)知識に基づくグラフ事前学習トランスフォーマーであり、微調整を誘導する。
MolCAPによって推進され、基礎的なグラフニューラルネットワークでさえ、以前のモデルを上回る驚くべきパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2023-06-13T13:48:06Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
大規模言語モデル(LLM)は、様々なクロスモーダルタスクにおいて顕著なパフォーマンスを示している。
本研究では,分子カプセル翻訳のためのインコンテキストFew-Shot Molecule Learningパラダイムを提案する。
分子理解とテキストベースの分子生成を含む分子キャプション翻訳におけるMollReGPTの有効性を評価する。
論文 参考訳(メタデータ) (2023-06-11T08:16:25Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGenは、分子生成に特化した事前訓練された分子言語モデルである。
1億以上の分子SELFIESを再構成することで構造的および文法的な洞察を内部化する。
我々の化学フィードバックパラダイムは、モデルを分子幻覚から遠ざけ、モデルの推定確率と実世界の化学的嗜好との整合性を確保する。
論文 参考訳(メタデータ) (2023-01-26T17:52:56Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
本稿では,MoLFormerと呼ばれる効率的なトランスフォーマーエンコーダモデルのトレーニングにより得られた分子埋め込みについて述べる。
実験の結果,グラフベースおよび指紋ベースによる教師付き学習ベースラインと比較して,学習された分子表現が競合的に機能することが確認された。
論文 参考訳(メタデータ) (2021-06-17T14:33:55Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
生成モデルと強化学習アプローチは、最初の成功をおさめたが、複数の薬物特性を同時に最適化する上で、依然として困難に直面している。
本稿では,MultI-Constraint MOlecule SAmpling (MIMOSA)アプローチ,初期推定として入力分子を用いるサンプリングフレームワーク,ターゲット分布からのサンプル分子を提案する。
論文 参考訳(メタデータ) (2020-10-05T20:18:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。